×

Note on the bundle geometry of field space, variational connections, the dressing field method, & presymplectic structures of gauge theories over bounded regions. (English) Zbl 1521.81341

Summary: In this note, we consider how the bundle geometry of field space interplays with the covariant phase space methods so as to allow to write results of some generality on the presymplectic structure of invariant gauge theories coupled to matter. We obtain in particular the generic form of Noether charges associated with field-independent and field-dependent gauge parameters, as well as their Poisson bracket. We also provide the general field-dependent gauge transformations of the presymplectic potential and 2-form, which clearly highlights the problem posed by boundaries in generic situations. We then conduct a comparative analysis of two strategies recently considered to evade the boundary problem and associate a modified symplectic structure to a gauge theory over a bounded region: namely the use of edge modes on the one hand, and of variational connections on the other. To do so, we first try to give the clearest geometric account of both, showing in particular that edge modes are a special case of a differential geometric tool of gauge symmetry reduction known as the “dressing field method”. Applications to Yang-Mills theory and General Relativity reproduce or generalise several results of the recent literature.

MSC:

81T45 Topological field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory
53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
53C80 Applications of global differential geometry to the sciences
83C45 Quantization of the gravitational field
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)

References:

[1] G. J. Zuckerman, Action principles and global geometry, Conf. Proc. C8607214 (1986) 259 [INSPIRE]. · Zbl 0669.58014
[2] C. Crnkovic and E. Witten, Three hundred years of gravitation, Cambridge University Press, Camrbidge U.K. (1987). · Zbl 0966.81533
[3] Crnkovic, C., Symplectic geometry of the covariant phase space, superstrings and superspace, Class. Quant. Grav., 5, 1557 (1988) · Zbl 0665.53052
[4] F. Gieres, Covariant canonical formulations of classical field theories, arXiv:2109.07330 [INSPIRE].
[5] Donnelly, W.; Freidel, L., Local subsystems in gauge theory and gravity, JHEP, 09, 102 (2016) · Zbl 1390.83016
[6] Gomes, H.; Riello, A., The observer’s ghost: notes on a field space connection, JHEP, 05, 017 (2017) · Zbl 1380.83020
[7] Gomes, H.; Riello, A., Unified geometric framework for boundary charges and particle dressings, Phys. Rev. D, 98 (2018)
[8] Gomes, H.; Hopfmüller, F.; Riello, A., A unified geometric framework for boundary charges and dressings: non-Abelian theory and matter, Nucl. Phys. B, 941, 249 (2019) · Zbl 1415.81042
[9] Gomes, H.; Riello, A., The quasilocal degrees of freedom of Yang-Mills theory, SciPost Phys., 10, 130 (2021)
[10] H. Gomes, Gauging the boundary in field-space, Studies History Phil. Sci. B67 (2019) 89. · Zbl 1422.70015
[11] Gomes, H., Holism as the empirical significance of symmetries, Eur. J. Phil. Sci., 11, 87 (2021)
[12] Riello, A., Soft charges from the geometry of field space, JHEP, 05, 125 (2020)
[13] Riello, A., Symplectic reduction of Yang-Mills theory with boundaries: from superselection sectors to edge modes, and back, SciPost Phys., 10, 125 (2021)
[14] Geiller, M., Edge modes and corner ambiguities in 3d Chern-Simons theory and gravity, Nucl. Phys. B, 924, 312 (2017) · Zbl 1373.81284
[15] Geiller, M., Lorentz-diffeomorphism edge modes in 3d gravity, JHEP, 02, 029 (2018) · Zbl 1387.83063
[16] Speranza, AJ, Local phase space and edge modes for diffeomorphism-invariant theories, JHEP, 02, 021 (2018) · Zbl 1387.83011
[17] Geiller, M.; Jai-akson, P., Extended actions, dynamics of edge modes, and entanglement entropy, JHEP, 09, 134 (2020) · Zbl 1454.81134
[18] A. Balachandran, L. Chandar and E. Ercolessi, Edge states in gauge theories: Theory, interpretation and predictions, Int. J. Mod. Phys A10 (1995) 1969. · Zbl 0985.81584
[19] Balachandran, AP; Chandar, L.; Momen, A., Edge states in gravity and black hole physics, Nucl. Phys. B, 461, 581 (1996) · Zbl 0925.83040
[20] M. Asorey, A. P. Balachandran and J. M. Pérez-Pardo, Edge states at phase boundaries and their stability, Rev. Math. Phys.28 (2016) 1650020 . · Zbl 1351.81079
[21] Adami, H.; Sheikh-Jabbari, MM; Taghiloo, V.; Yavartanoo, H.; Zwikel, C., Symmetries at null boundaries: two and three dimensional gravity cases, JHEP, 10, 107 (2020) · Zbl 1456.83053
[22] Seraj, A., Gravitational breathing memory and dual symmetries, JHEP, 05, 283 (2021) · Zbl 1466.83087
[23] Freidel, L.; Geiller, M.; Pranzetti, D., Edge modes of gravity. Part I. Corner potentials and charges, JHEP, 11, 026 (2020) · Zbl 1460.83030
[24] Freidel, L.; Geiller, M.; Pranzetti, D., Edge modes of gravity. Part II. Corner metric and Lorentz charges, JHEP, 11, 027 (2020) · Zbl 1456.83024
[25] Freidel, L.; Geiller, M.; Pranzetti, D., Edge modes of gravity. Part III. Corner simplicity constraints, JHEP, 01, 100 (2021) · Zbl 1459.83016
[26] M. Lavelle and D. McMullan, Constituent quarks from QCD, Phys. Rept.279 (1997) 1.
[27] E. Bagan, M. Lavelle and D. McMullan, Charges from dressed matter: construction, Ann. Phys.282 (2000) 471. · Zbl 0990.81144
[28] De Paoli, E.; Speziale, S., A gauge-invariant symplectic potential for tetrad general relativity, JHEP, 07, 040 (2018) · Zbl 1395.83046
[29] Oliveri, R.; Speziale, S., Boundary effects in general relativity with tetrad variables, Gen. Rel. Grav., 52, 83 (2020) · Zbl 1468.83009
[30] Oliveri, R.; Speziale, S., A note on dual gravitational charges, JHEP, 12, 079 (2020) · Zbl 1457.83011
[31] S. Murgueitio Ramírez and N. Teh, Abandoning Galileo’s ship: the quest for non-relational empirical significance, British J. Phys. Sci. (2020).
[32] P. Mathieu, L. Murray, A. Schenkel and N. J. Teh, Homological perspective on edge modes in linear Yang-Mills and Chern-Simons theory, Lett. Math. Phys.110 (2020) 1559. · Zbl 1448.70089
[33] François, J., Bundle geometry of the connection space, covariant Hamiltonian formalism, the problem of boundaries in gauge theories, and the dressing field method, JHEP, 03, 225 (2021) · Zbl 1461.83058
[34] Abbott, LF; Deser, S., Charge definition in nona-Belian gauge theories, Phys. Lett. B, 116, 259 (1982)
[35] Abbott, LF; Deser, S., Stability of gravity with a cosmological constant, Nucl. Phys. B, 195, 76 (1982) · Zbl 0900.53033
[36] Barnich, G.; Brandt, F., Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B, 633, 3 (2002) · Zbl 0995.81054
[37] A. Frölicher and A. Kriegl, Linear spaces and differentiation theory, Pure and Applied Mathematics, John Wiley & Sons, U.S.A. (1988). · Zbl 0657.46034
[38] A. Kriegl and P. P. Michor, The convenient setting of global analysis, Mathematical Surveys and Monographs volume 53, American Mathematical Society, U.S.A. (1997). · Zbl 0889.58001
[39] Singer, IM, Some remarks on the Gribov ambiguity, Commun. Math. Phys., 60, 7 (1978) · Zbl 0379.53009
[40] I. M. Singer, The geometry of the orbit space for non-abelian gauge theories, Phys. Scripta24 (1981) 817. · Zbl 1063.81623
[41] P. K. Mitter and C. M. Viallet, On the bundle of connections and the gauge orbit manifold in yang-mills theory, Commun. Math. Phys.79 (1981) 457. · Zbl 0474.58004
[42] P. Cotta Ramusino and C. Reina, The action of the group of bundle-automorphisms on the space of connections and the geometry of gauge theories, J. Geom. Phys.1 (1984) 121. · Zbl 0599.53060
[43] M. Abbati, R. Cirelli, A. Maniá and P. Michor, The Lie group of automorphisms of a principle bundle, J. Geom. Phys.6 (1989) 215. · Zbl 0692.58010
[44] J. Fuchs, The singularity structure of the Yang-Mills configuration space, Banach Center Publ.39 (1997) 287. · Zbl 0917.53005
[45] Gribov, VN, Quantization of nonabelian gauge theories, Nucl. Phys. B, 139, 1 (1978)
[46] B. S. DeWitt, The global approach to quantum field theory, International series of monographs on physics, Oxford University Press, Oxford U.K. (2003). · Zbl 1044.81001
[47] J. François, Twisted gauge fields, arXiv:1907.08666 [INSPIRE]. · Zbl 1507.81143
[48] R. A. Bertlmann, Anomalies in quantum field theory, International Series of Monographs on Physics volume 91, Oxford University Press, Oxford U.K. (1996). · Zbl 1223.81003
[49] M. Göckeler and T. Schücker, Differential geometry, gauge theory and gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (1987). · Zbl 0649.53001
[50] Mañes, J.; Stora, R.; Zumino, B., Algebraic study of chiral anomalies, Commun. Math. Phys., 102, 157 (1985) · Zbl 0573.53054
[51] J. Attard and S. Lazzarini, A note on Weyl invariance in gravity and the Wess-Zumino functional, Nucl. Phys. B912 (2016) 289 [arXiv:1607.06326] [INSPIRE]. · Zbl 1349.81165
[52] C. Fournel, J. François, S. Lazzarini and T. Masson, Gauge invariant composite fields out of connections, with examples, Int. J. Geom. Meth. Phys.11 (2014) 1450016. · Zbl 1292.53048
[53] J. François, Reduction of gauge symmetries: a new geometrical approach, thesis, Aix-Marseille Université, Fracne (2014).
[54] J. Attard, J. François, S. Lazzarini and T. Masson, The dressing field method of gauge symmetry reduction, a review with examples, arXiv:1702.02753 [INSPIRE].
[55] J. François, Artificial versus substantial gauge symmetries: a criterion and an application to the electroweak model, Phil. Sci.86 (2019) 472.
[56] F. Hélein, Variational problems in differential geometry, London Mathematical Society Lecture Note Series volume 394, Cambridge University Press, Cambridge U.K. (2012). · Zbl 1230.53006
[57] J. Lee and R. Wald, Local symmetries and constraints, J. Math. Phys.31 (1990) 725. · Zbl 0704.70013
[58] A. Ashtekar, L. Bombelli and O. Reula, The covariant phase space of asymptotically flat gravitational fields, in Mechanics, analysis and geometry: 200 years after lagrange, M. Francaviglia ed., North-Holland Delta Series, Elsevier, Switzerland (1991). · Zbl 0717.53056
[59] G. Compère and A. Fiorucci, Advanced lectures on general relativity, arXiv:1801.07064 [INSPIRE]. · Zbl 1419.83003
[60] Harlow, D.; Wu, J-Q, Covariant phase space with boundaries, JHEP, 10, 146 (2020) · Zbl 1461.83007
[61] Farajollahi, H.; Lückock, H., Dirac observables and the phase space of general relativity, Gen. Rel. Grav., 34, 1685 (2002) · Zbl 1015.83008
[62] M. Castrillón López, J. Muñoz Masqué and E. Rosado María, Structure of gauge-invariant Lagrangians, Mediterr. J. Math.17 (2019) 29. · Zbl 1433.53034
[63] U. Bruzzo, The global Utiyama theorem in Einstein-Cartan theory, J, Math. Phys.28 (1987) 2074. · Zbl 0635.53069
[64] M. Forger and S. Viera Romero, Covariant Poisson brackets in geometric field theory, Commun. math. Phys.256 (2005) 375. · Zbl 1074.53071
[65] Freidel, L.; Oliveri, R.; Pranzetti, D.; Speziale, S., Extended corner symmetry, charge bracket and Einstein’s equations, JHEP, 09, 083 (2021) · Zbl 1472.83012
[66] Barnich, G.; Brandt, F.; Henneaux, M., Local BRST cohomology in gauge theories, Phys. Rept., 338, 439 (2000) · Zbl 1097.81571
[67] R. W. Sharpe, Differential geometry: Cartan’s generalization of Klein’s Erlangen program, Graduate text in Mathematics volume 166, Springer, Germany (1996). · Zbl 0876.53001
[68] A. Cap and J. Slovak, Parabolic geometries i: background and general theory, Mathematical Surveys and Monographs volume 1, American Mathematical Society, U.S.A. (2009). · Zbl 1183.53002
[69] S. Carrozza and P. A. Hoehn, Edge modes as reference frames and boundary actions from post-selection, arXiv:2109.06184 [INSPIRE].
[70] P. A. M. Dirac, Gauge-invariant formulation of quantum electrodynamics, Canad. J. Phys.33 (1955) 650. · Zbl 0068.22801
[71] P. A. M. Dirac, The principles of quantum mechanics,^th edition, Oxford University Press, Oxford, U.K. (1958). · Zbl 0080.22005
[72] J. B. Pitts, Empirical equivalence, artificial gauge freedom and a generalized Kretschmann objection, arXiv:0911.5400 [INSPIRE].
[73] Jackiw, R.; Pi, S-Y, Fake conformal symmetry in conformal cosmological models, Phys. Rev. D, 91 (2015)
[74] P. Berghofer et al., Gauge symmetries, symmetry breaking, and gauge-invariant approaches, arXiv:2110.00616 [INSPIRE]. · Zbl 07689812
[75] H. Lyre, Holism and structuralism in U (1) gauge theory, Studies History Phil. Mod. Phys.35 (2004) 643. · Zbl 1222.81074
[76] A. Guay, A partial elucidation of the gauge principle, Studies History Phil. Sci. B39 (2008) 346. · Zbl 1223.81135
[77] R. Healey, Gauging what’s real: the conceptual foundation of contemporary gauge theories, Oxford University Press, Oxford U.K. (2009). · Zbl 1179.81003
[78] J. Dougherty, Sameness and separability in gauge theories, Phil. Sci.84 (2017) 1189.
[79] J. Nguyen, N. J. Teh and L. Wells, Why surplus structure is not superfluous, British J. Phys. Sci.71 (2020) 665.
[80] A. Riello, Edge modes without edge modes, arXiv:2104.10182 [INSPIRE].
[81] D. Wallace, Deflating the Aharonov-Bohm effect, arXiv:1407.5073 [INSPIRE].
[82] T. Masson and J.-C. Wallet, A remark on the spontaneous symmetry breaking mechanism in the standard model, arXiv:1001.1176 [INSPIRE].
[83] Higgs, PW, Spontaneous symmetry breakdown without massless bosons, Phys. Rev., 145, 1156 (1966)
[84] Kibble, TWB, Symmetry breaking in non-Abelian gauge theories, Phys. Rev., 155, 1554 (1967)
[85] Banks, T.; Rabinovici, E., Finite temperature behavior of the lattice abelian Higgs model, Nucl. Phys. B, 160, 349 (1979)
[86] Fröhlich, J.; Morchio, G.; Strocchi, F., Higgs phenomenon without symmetry breaking order parameter, Nucl. Phys. B, 190, 553 (1981)
[87] Buchmüller, W.; Fodor, Z.; Hebecker, A., Gauge invariant treatment of the electroweak phase transition, Phys. Lett. B, 331, 131 (1994)
[88] Lavelle, M.; McMullan, D., Observables and gauge fixing in spontaneously broken gauge theories, Phys. Lett. B, 347, 89 (1995)
[89] L. D. Faddeev, An alternative interpretation of the Weinberg-Salam model, in Progress in High Energy Physics and Nuclear Safety, V. Begun et al. eds., Springer, Germany (2009).
[90] Ilderton, A.; Lavelle, M.; McMullan, D., Symmetry breaking, conformal geometry and gauge invariance, J. Phys. A, 43 (2010) · Zbl 1194.81297
[91] A. Maas, Brout-Englert-Higgs physics: from foundations to phenomenology, Progr. Part. Nucl. Phys.106 (2019) 132.
[92] J. Earman, Curie’s principle and spontaneous symmetry breaking, Int. Studies Phil. Sci.18 (2004) 173. · Zbl 1078.81007
[93] C. Smeenk, The elusive Higgs mechanism, Phil. Sci.73 (2006) 487.
[94] H. Lyre, Does the Higgs mechanism exists?, Int. Studies Phil. Sci.22 (2008) 119. · Zbl 1158.81302
[95] W. Struyve, Gauge invariant accounts of the higgs mechanism, Studies History Phil. Sci. B42 (2011) 226. · Zbl 1239.81055
[96] S. Friederich, Gauge symmetry breaking in gauge theories — In search of clarification, Eur. J. Phil. Sci.3 (2013) 157. · Zbl 1314.81106
[97] S. Friederich, A philosophical look at the Higgs mechanism, J. Gen. Philos. Sci45 (2014) 335.
[98] Kastor, D., Komar integrals in higher (and lower) derivative gravity, Class. Quant. Grav., 25 (2008) · Zbl 1149.83012
[99] Y. Choquet-Bruhat, General relativity and the Einstein equations, Oxford Mathematical Monographs, Oxford University Press, Oxford U.K. (2009). · Zbl 1157.83002
[100] J. B. Pitts, The nontriviality of trivial general covariance: How electrons restrict time coordinates, spinors (almost) fit into tensor calculus, and 7/16 of a tetrad is surplus structure, Studies History Phil. Mod. Phys.43 (2012) 1 [arXiv:1111.4586]. · Zbl 1281.81039
[101] S. N. Curry and A. R. Gover, An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity, in Asymptotic analysis in general relativity, T. Daudé et al. eds., London Mathematical Society, Cambridge University Press, Cambridge U.K. (2018). · Zbl 1416.83014
[102] Barnich, G.; Troessaert, C., BMS charge algebra, JHEP, 12, 105 (2011) · Zbl 1306.83002
[103] Compère, G.; Fiorucci, A.; Ruzziconi, R., The Λ-BMS_4charge algebra, JHEP, 10, 205 (2020) · Zbl 1456.81215
[104] Freidel, L.; Oliveri, R.; Pranzetti, D.; Speziale, S., The Weyl BMS group and Einstein’s equations, JHEP, 07, 170 (2021) · Zbl 1468.83017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.