×

A computational approach to identifiability analysis for a model of the propagation and control of COVID-19 in Chile. (English) Zbl 1528.92036

In this paper a computational approach developed earlier by K. Roosa and G. Chowell [“Assessing parameter identifiability in compartmental dynamic models using a computational approach: application to infectious disease transmission models”, Theor. Biol. Med. Modelling 16, No. 1, 15 p. (2019; doi:10.1186/s12976-018-0097-6)] for simple epidemic models is adapted to a complex compartmental model describing the spread of COVID-19 in Chile, for which the authors propose a methodology to analyse the structural and practical parameter identifiability. The parameter uncertainty is studied computationally using a parametric bootstrapping approach. Synthetic data generated with the same model were used to measure the capability of the model to recover the parameters assumed to satisfy the structural and practical identifiability. In the second part of the method, the results obtained from synthetic data are compared to parameter sets from regional Chilean epidemic data. The authors find loss of identifiability if some initial conditions are estimated, the period of time used to fit is before the peak, and if a significant proportion of the population is involved in quarantine periods. The results highlight the importance of investigating the identifiability of model parameters through structural and practical identifiability analysis to avoid misleading model inferences during an epidemic outbreak.

MSC:

92D30 Epidemiology
34A34 Nonlinear ordinary differential equations and systems

Software:

GenSSI; SIAN

References:

[1] Adiga, A.; Dubhashi, D.; Lewis, B.; Marathe, M.; Venkatramanan, S.; Vullikanti, A., Mathematical models for COVID-19 pandemic: A comparative analysis, J. Indian Inst. Sci., 100, 793-807 (2020)
[2] Afzal, A.; Saleel, C.; Bhattacharyya, S.; Satish, N.; Samuel, O. D.; Badruddin, I. A., Merits and limitations of mathematical modeling and computational simulations in mitigation of COVID-19 pandemic: A comprehensive review, Arch. Comput. Meth. Eng., 29, 1311-1337 (2022)
[3] Anderson, R. M.; May, R. M., Infectious Diseases of Humans: Dynamics and Control (1991), Oxford University Press
[4] Biggerstaff, M.; Slayton, R.; Johansson, M.; Butler, J., Improving pandemic response: Employing mathematical modeling to confront xoronavirus disease 2019, Clin. Infect. Dis., 74, 913-917 (2022)
[5] Brauer, F.; Castillo-Chavez, C., Mathematical Models in Population Biology and Epidemiology (2012), Springer: Springer, New York · Zbl 1302.92001
[6] Buckner, J. H.; Chowell, G.; Springborn, M. R., Dynamic prioritization of COVID-19 vaccines when social distancing is limited for essential workers, Proc. Nat. Acad. Sci., 118, 16, e2025786118 (2021)
[7] Bürger, R.; Chowell, G.; Lara-Díaz, L. Y., Comparative analysis of phenomenological growth models applied to epidemic outbreaks, Math. Biosci. Eng., 16, 4250-4273 (2019) · Zbl 1497.92239
[8] Bürger, R.; Chowell, G.; Lara-Díaz, L. Y., Measuring differences between phenomenological growth models applied to epidemiology, Math. Biosci., 334, 108558 (2021) · Zbl 1474.92096 · doi:10.1016/j.mbs.2021.108558
[9] Burki, T., COVID-19 in Latin America, Lancet Infect. Dis., 20, 5, 547-548 (2020) · doi:10.1016/s1473-3099(20)30303-0
[10] Census Chile, Census Chile (2017). Accessed February 7, 2021. Available at http://www.censo2017.cl/descargas/home/sintesis-de-resultados-censo2017.pdf.
[11] Chan, J. W.; Yuan, S.; Kok, K.; To, K. W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C. Y.; Poon, R. W.S.; Tsoi, H. W.; Lo, S. K.F.; Chan, K. H.; Poon, V. K.M.; Chan, W. M.; Ip, J. D.; Cai, J. P.; Cheng, V. C.C.; Chen, H.; Hui, C. K.M.; Yuen, K. Y., A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster, Lancet, 395, 514-523 (2020)
[12] Chapman, J.; Evans, N., The structural identifiability of susceptible-infective-recovered type epidemic models with incomplete immunity and birth targeted vaccination, Biomed. Signal Process. Control, 4, 278-284 (2009)
[13] Chis, O. T.; Banga, J. R.; Balsa-Canto, E., Structural identifiability of systems biology models: A critical comparison of methods, PLoS One, 6, 11, e27755 (2011)
[14] Chowell, G., Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecast, Infect. Disease Model., 2, 379-398 (2017)
[15] Chowell, G., Chowell, D., Roosa, K., Dhillon, R., and Devabhaktuni, S., Sustainable social distancing through facemask use and testing during the COVID-19 pandemic, preprint (2020). Available at medRXiv.
[16] Chowell, G., Dahal, S., Liyanage, Y., Tariq, A., and Tuncer, N., Structural identifiability analysis of epidemic models based on differential equations: A primer, preprint (2022). Available at arXiv.
[17] Chowell, G.; Fenimore, P.; Castillo-Garsow, M.; Castillo-Chavez, C., SARS outbreaks in Ontario, Hong Kong and Singapore: The role of diagnosis and isolation as a control mechanism, J. Theor. Biol., 224, 1-8 (2003) · Zbl 1434.92028
[18] Diekmann, O.; Heesterbeek, H.; Britton, T., Mathematical Tools for Understanding Infectious Disease Dynamics (2013), Vol. 7. Princeton University Press · Zbl 1304.92009
[19] Evans, N.; White, L.; Chapman, M.; Godfrey, K.; Chappell, M., The structural identifiability of the susceptible infected recovered model with seasonal forcing, Math. Biosci., 194, 175-197 (2005) · Zbl 1065.92040
[20] Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, H. J.T.; Mellan, T. A.; Coupland, H.; Eeeetal, E.; Zhu, H.; Berah, T.; Eaton, J. W.; Monod, M.; Ghani, A. C.; Donnelly, C. A.; Riley, S.; Vollmer, M. A.C.; Ferguson, N. M.; Okell, L. C.; Bhatt, S.; Imperial College COVID-19 Response Team, Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe, Nature, 194, 175-197 (2005)
[21] Freire-Flores, D.; Llanovarced-Kawles, N.; Sanchez-Daza, A.; Olivera-Nappa, Á., On the heterogeneous spread of COVID-19 in Chile, Chaos Solit. Fract., 150 (2021)
[22] Gallo, L.; Frasca, M.; Latora, V.; Russo, G., Lack of practical identifiability may hamper reliable predictions in COVID-19 epidemic models, Sci. Adv., 8, eabg5234 (2022) · doi:10.1126/sciadv.abg5234
[23] Garcia, P. J.; Alarcón, A.; Bayer, A.; Buss, P.; Guerra, G.; Ribeiro, H.; Rojas, K.; Saenz, R.; Salgado de Snyder, N.; Solimano, G.; Torres, R.; Tobar, S.; Tuesca, R.; Vargas, G.; Atun, R., COVID-19 response in Latin America, Am. J. Trop. Med. Hyg., 103, 1765-1772 (2020)
[24] Government of Chile, COVID-19 data. Accessed February 16, 2021. Official COVID-19. Available at https://www.gob.cl/coronavirus/cifrasoficiales/#reportes.
[25] Hong, H.; Ovchinnikov, A.; Pogudin, G.; Yap, C., SIAN: Software for structural identifiability analysis of ODE models, Bioinformatics, 35, 2873-2874 (2019) · doi:10.1093/bioinformatics/bty1069
[26] Jia, J., Ding, J., Liu, S., Liao, G., Li, J., Duan, B., Wang, G., and Zhang, R., Modeling the control of COVID-19: Impact of policy interventions and meteorological factors (2020). · Zbl 1448.92130
[27] Kao, Y. H.; Eisenberg, M. C., Practical unidentifiability of a simple vector-borne disease model: Implications for parameter estimation and intervention assessment, Epidemics, 25, 89-100 (2018)
[28] Kermack, W.; McKendrick, A., A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. A, 115, 700-721 (1927) · JFM 53.0517.01
[29] Kharazmi, E.; Cai, M.; Zheng, X.; Zhang, Z.; Lin, G.; Karniadakis, G. E., Identifiability and predictability of integer- and fractional-order epidemiological models using physics-informed neural networks, Nature Comput. Sci., 1, 744-753 (2021)
[30] Kirby, T., South America prepares for the impact of COVID-19, Lancet Respir. Med., 8, 6, 551-552 (2020)
[31] Li, H. J.; Wan, L.; Wang, Z.; u, C. X.Z.; Moustakas, A.; Pei, S., Mathematical modelling of the pandemic of 2019 novel coronavirus (COVID-19): Patterns, dynamics, prediction, and control, Front. Phys., 9 (2021)
[32] Li, Y.; Campbell, H.; Kulkarni, D.; Harpur, A.; Nundy, M.; Wang, X.; Nair, H., The temporal association of introducing and lifting non-pharmaceutical interventions with the time-varying reproduction number (R) of SARS-CoV-2: A modelling study across 131 countries, Lancet Infect. Dis., 21, 193-202 (2021)
[33] Ligon, T. S.; Fröhlich, F.; Chiş, O. T.; Banga, J. R.; Balsa-Canto, E.; Hasenauer, J., GenSSI 2.0: Multi-experiment structural identifiability analysis of SBML models, Bioinformatics, 34, 1421-1423 (2017) · doi:10.1093/bioinformatics/btx735
[34] Linton, N.; Kobayashi, T.; Yang, Y.; Hayashi, K.; Akhmetzhanov, A.; Jung, S. M.; Yuan, B.; Kinoshita, R.; Nishiura, H., Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: A statistical analysis of publicly available case data, J. Clin. Med., 9, 538 (2020) · doi:10.3390/jcm9020538
[35] Martcheva, M., An Introduction to Mathematical Epidemiology (2015), Springer: Springer, New York · Zbl 1333.92006
[36] McKinley, T.; Cook, A. R.; Deardon, R., Inference in epidemic models without likelihoods, Int. J. Biostat., 5, 1 (2009) · doi:10.2202/1557-4679.1171
[37] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E., Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087-1092 (2004) · Zbl 1431.65006 · doi:10.1063/1.1699114
[38] Miao, H.; Dykes, C.; Demeter, L. M.; Cavenaugh, J.; Park, S. Y.; Perelson, A. S.; Wu, H., Modeling and estimation of kinetic parameters and replicative fitness of HIV-1 from flow-cytometry-based growth competition experiments, Bull. Math. Biol., 70, 1749-1771 (2008) · Zbl 1166.92029
[39] Miao, H.; Xia, X.; Perelson, A. S.; Wu, H., On identifiability of nonlinear ODE models and applications in viral dynamics, SIAM Rev., 53, 3-39 (2011) · Zbl 1215.34015
[40] Ministerio de Salud, Chile, Ministerio de Salud, Chile. Accessed July 29, 2021. Available at http://www.minsal.cl.
[41] Ministery of Science, Technology, Knowledge and Innovation of Chile, Website of the official database for COVID-19 research. Accessed February 16, 2021. Available at http://www.minciencia.gob.cl/covid19.
[42] Mizumoto, K.; Kagaya, K.; Zarebski, A.; Chowell, G., Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020, Euro Surveill., 25, 10 (2020) · doi:10.2807/1560-7917.es.2020.25.10.2000180
[43] Morciglio, A.; Zhang, B.; Chowell, G.; Hyman, J. M.; Jiang, Y., Mask-ematics: Modeling the effects of masks in COVID-19 transmission in high-risk environments, Epidemiologia, 2, 207-226 (2021) · doi:10.3390/epidemiologia2020016
[44] Murty, V. K.; Wu, J., Mathematics of Public Health (2022), Springer: Springer, Cham
[45] Navarro, J. C.; Arrivillaga-Henríquez, J.; Salazar-Loor, J.; Rodriguez-Morales, A. J., COVID-19 and dengue, co-epidemics in Ecuador and other countries in Latin America: Pushing strained health care systems over the edge, Travel Med. Infect. Dis., 37 (2020)
[46] Nishiura, H.; Kobayashi, T.; Miyama, T.; Suzuki, A.; Jung, S. M.; Hayashi, K.; Kinoshita, R.; Yang, Y.; Yuan, B.; Akhmetzhanov, A. R.; Linton, N. M., Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19), Int. J. Infect. Dis, 94, 154-155 (2020)
[47] Padmanabhan, R.; Abed, H. S.; Meskin, N.; Khattab, T.; Shraim, M.; Al-Hitmi, M. A., A review of mathematical model-based scenario analysis and interventions for COVID-19, Comput. Meth. Programs Biomed., 209 (2021)
[48] Paireau, J.; Andronico, A.; Hozé, N.; Layan, M.; Crépey, P.; Roumagnac, A.; Lavielle, M.; Boëlle, P. Y.; Cauchemez, S., An ensemble model based on early predictors to forecast COVID-19 health care demand in France, Proc. Nat. Acad. Sci., 119, e2103302119 (2022) · doi:10.1073/pnas.2103302119
[49] Peng, L., Yang, W., Zhang, D., Zhuge, C., and Hong, L., Epidemic analysis of COVID-19 in China by dynamical modeling, (2020). Available at medRxiv https://www.medrxiv.org/content/early/2020/02/18/2020.02.16.20023465.
[50] Renardy, M.; Kirschner, D.; Eisenberg, M., Structural identifiability analysis of age-structured pde epidemic models, J. Math. Biol., 84, 1-30 (2022) · Zbl 1514.35443
[51] Roosa, K.; Chowell, G., Assessing parameter identifiability in compartmental dynamic models using a computational approach: application to infectious disease transmission models, Theor. Biol. Med. Model., 16, 1 (2019) · doi:10.1186/s12976-018-0097-6
[52] Sauer, T.; Berry, T.; Ebeigbe, D.; Norton, M. M.; Whalen, A. J.; Schiff, S. J., Identifiability of infection model parameters early in an epidemic, SIAM J. Control Optim., 60, 2, S27-S48 (2022) · Zbl 1475.92189
[53] Shankar, S.; Mohakuda, S. S.; Kumar, A.; Nazneen, P.; Yadav, A. K.; Chatterjee, K.; Chatterjee, K., Systematic review of predictive mathematical models of COVID-19 epidemic, Medical J. Armed Forc. India, 77, S385-S392 (2021)
[54] Tariq, A.; Chakhaia, T.; Dahal, S.; Ewing, A.; Hua, X.; Ofori, S. K.; Prince, O.; Salindri, A. D.; Adeniyi, A. E.; Banda, J. M.; Skums, P.; Luo, R.; Lara-Díaz, L. Y.; Bürger, R.; Fung, I. C.H.; Shim, E.; Kirpich, A.; Srivastava, A.; Chowell, G., An investigation of spatial-temporal patterns and predictions of the coronavirus 2019 pandemic in colombia, 2020-2021, PLOS Negl. Trop. Dis., 16, e0010228 (2022) · doi:10.1371/journal.pntd.0010228
[55] E.C.C.W. T.N.C.P.E.R.E. Team, The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) −china (2020).
[56] Tuncer, N.; Le, T. T., Structural and practical identifiability analysis of outbreak models, Math. Biosci., 299, 1-18 (2018) · Zbl 1393.92053
[57] Tuncer, N.; Timsina, A.; Nuno, M.; Chowell, G.; Martcheva, M., Parameter identifiability and optimal control of an SARS-CoV-2 model early in the pandemic, J. Biol. Dyn., 16, 412-438 (2022) · Zbl 1494.92151
[58] Undurraga, E. A.; Chowell, G.; Mizumoto, K., COVID-19 case fatality risk by age and gender in a high testing setting in Latin America: Chile, March-August 2020, Infect. Dis. Pov., 10, 1 (2021)
[59] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036
[60] Vynnycky, E.; White, R. E., An Introduction to Infectious Disease Modelling (2010), OUP Oxford
[61] Walker, P. G.T.; Whittaker, C.; Watson, O. J.; Baguelin, M.; Winskill, P.; Hamlet, A.; Djafaara, B. A.; Cucunubá, Z.; Mesa, D. O.; Green, W.; Thompson, H.; Nayagam, S.; Ainslie, K. E.C.; Bhatia, S.; Bhatt, S.; Boonyasiri, A.; Boyd, O.; Brazeau, N. F.; Cattarino, L.; Cuomo-Dannenburg, G.; Dighe, A.; Donnelly, C. A.; Dorigatti, I.; van Elsland, S. L.; FitzJohn, R.; Fu, H.; Gaythorpe, K. A.M.; Geidelberg, L.; Grassly, N.; Haw, D.; Hayes, S.; Hinsley, W.; Imai, N.; Jorgensen, D.; Knock, E.; Laydon, D.; Mishra, S.; Nedjati-Gilani, G.; Okell, L. C.; Unwin, H. J.; Verity, R.; Vollmer, M.; Walters, C. E.; Wang, H.; Wang, Y.; Xi, X.; Lalloo, D. G.; Ferguson, N. M.; Ghani, A. C., The impact of COVID-19 and strategies for mitigation and suppression in low- and middle-income countries, Science, 369, 413-422 (2020) · Zbl 1478.92234 · doi:10.1126/science.abc0035
[62] Wang, J., Mathematical models for COVID-19: applications, limitations, and potentials, J. Publ. Health Emerg., 4, 9-9 (2020) · doi:10.21037/jphe-2020-05
[63] Wikipedia Commons, Map of Chile. Accessed February 7, 2021. Available at https://commons.wikimedia.org/wiki/File:Mapa-chile.svg.
[64] World Health Organization, WHO Director-General’s opening remarks at the media briefing on COVID-19-11. March 2020 World Health Organization 2020 [April 23]. Available at https://bit.ly/2A8aCIO.
[65] Wu, H.; Zhu, H.; Miao, H.; Perelson, A., Parameter identifiability and estimation of HIV/AIDS dynamic models, Bull. Math. Biol., 70, 785-799 (2008) · Zbl 1146.92021
[66] Yan, P.; Chowell, G., Quantitative Methods for Investigating Infectious Disease Outbreaks (2019), Springer: Springer, Cham · Zbl 1422.92002
[67] You, C.; Deng, Y.; Hu, W.; Sun, J.; Lin, Q.; Zhou, F.; Pang, C. H.; Zhang, Y.; Chen, Z.; Zhou, X. H., Estimation of the time-varying reproduction number of COVID-19 outbreak in China, Int. J. Hyg. Environ. Health, 228 (2020)
[68] Zhan, C.; Zheng, Y.; ai, T. H.Z.; Li, B., Identifying epidemic spreading dynamics of COVID-19 by pseudocoevolutionary simulated annealing optimizers, Neural Comput. Applic., 33, 4915-4928 (2021)
[69] Zhang, S.; Ponce, J.; Zhang, Z.; Lin, G.; Karniadakis, G., An integrated framework for building trustworthy data-driven epidemiological models: Application to the COVID-19 outbreak in New York City, PLOS Comput. Biol., 17, 1-29 (2021) · doi:10.1371/journal.pcbi.1009334
[70] Zhao, Z.; Li, X.; Liu, F.; Zhu, G.; Ma, C.; Wang, L., Prediction of the COVID-19 spread in African countries and implications for prevention and control: A case study in South Africa, Egypt, Algeria, Nigeria, Senegal and Kenya, Sci. Tot. Environ., 729 (2020)
[71] Zhou, C., Evaluating new evidence in the early dynamics of the novel coronavirus COVID-19 outbreak in Wuhan, China with real time domestic traffic and potential asymptomatic transmissions, (2020). Available at medRxiv https://www.medrxiv.org/content/early/2020/02/20/2020.02.15.20023440.
[72] Zou, L.; Ruan, F.; Huang, M.; Liang, L.; Huang, H.; Hong, Z.; Yu, J.; Kang, M.; Song, Y.; Xia, J.; Guo, Q.; Song, T.; He, J.; Yen, H. L.; Peiris, M.; Wu, J., SARS-CoV-2 viral load in upper respiratory specimens of infected patients, New Engl. J. Med., 382, 1177-1179 (2020) · doi:10.1056/NEJMc2001737
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.