×

Identifiability of infection model parameters early in an epidemic. (English) Zbl 1475.92189

Summary: It is known that the parameters in the deterministic and stochastic SEIR epidemic models are structurally identifiable. For example, from knowledge of the infected population time series \(I(t)\) during the entire epidemic, the parameters can be successfully estimated. In this article we observe that estimation will fail in practice if only infected case data during the early part of the epidemic (prepeak) is available. This fact can be explained using a well-known phenomenon called dynamical compensation. We use this concept to derive an unidentifiability manifold in the parameter space of SEIR that consists of parameters indistinguishable from \(I(t)\) early in the epidemic. Thus, identifiability depends on the extent of the system trajectory that is available for observation. Although the existence of the unidentifiability manifold obstructs the ability to exactly determine the parameters, we suggest that it may be useful for uncertainty quantification purposes. A variant of SEIR recently proposed for COVID-19 modeling is also analyzed, and an analogous unidentifiability surface is derived.

MSC:

92D30 Epidemiology

Software:

PyRoss
Full Text: DOI

References:

[1] R. Adhikari, A. Bolitho, F. Caballero, M. Cates, J. Dolezal, T. Ekeh, J. Guioth, et al., Inference, Prediction and Optimization of Non-Pharmaceutical Interventions Using Compartment Models: the PyRoss Library, preprint, https://arxiv.org/abs/2005.09625, 2020.
[2] R. Bellman and K. Aström, On structural identifiability, Math. Biosci., 7 (1970), pp. 329-339.
[3] M. Berman and R. Schoenfeld, Invariants in experimental data on linear kinetics and the formulation of models, J. Appl. Phys., 27 (1956), pp. 1361-1370.
[4] S. Berthoumieux, M. Brilli, D. Kahn, H. de Jong, and E. Cinquemani, On the identifiability of metabolic network models, J. Math. Biol., 67 (2013), pp. 1795-1832, https://doi.org/10.1007/s00285-012-0614-x. · Zbl 1304.92058
[5] O.-T. Chis, J. R. Banga, and E. Balsa-Canto, Structural identifiability of systems biology models: A critical comparison of methods, PloS One, 6 (2011), e27755.
[6] G. Chowell, Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts, Infectious Disease Model., 2 (2017), pp. 379-398.
[7] D. Ebeigbe, T. Berry, S. Schiff, and T. Sauer, A Poisson Kalman Filter to Control the Dynamics of Neonatal Sepsis and Postinfectious Hydrocephalus, preprint, https://arxiv.org/abs/2003.11194v1, 2020.
[8] R. Engbert, M. Rabe, R. Kliegl, and S. Reich, Sequential data assimilation of the stochastic SEIR epidemic model for regional COVID-19 dynamics, Bull. Math. Biol., 83 (2021), 1, https://doi.org/10.1007/s11538-020-00834-8. · Zbl 1457.92163
[9] J. Karlsson, M. Anguelova, and M. Jirstrand, An efficient method for structural identifiability analysis of large dynamic systems, IFAC Proc. Vol., 45 (2012), pp. 941-946. · Zbl 1320.93032
[10] W. Kermack and A. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), pp. 700-721. · JFM 53.0517.01
[11] M. Li, J. Dushoff, and B. Bolker, Fitting mechanistic epidemic models to data: A comparison of simple Markov chain Monte Carlo approaches, Statist. Methods Med. Res., 27 (2018), pp. 1956-1967.
[12] R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, and J. Shaman, Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2), Science, 368 (2020), pp. 489-493.
[13] M. Lipsitch, T. Cohen, B. Cooper, J. Robins, S. Ma, L. James, G. Gopalakrishna, et al., Transmission dynamics and control of severe acute respiratory syndrome, Science, 300 (2003), pp. 1966-1970.
[14] A. Lloyd, Sensitivity of model-based epidemiological parameter estimation to model assumptions, in Mathematical and Statistical Estimation Approaches in Epidemiology, Springer, 2009, pp. 123-141. · Zbl 1345.92148
[15] G. Margaria, E. Riccomagno, and L. J. White, Structural identifiability analysis of some highly structured families of statespace models using differential algebra, J. Math. Biol., 49 (2004), pp. 433-454. · Zbl 1084.92027
[16] H. Miao, X. Xia, A. S. Perelson, and H. Wu, On identifiability of nonlinear ODE models and applications in viral dynamics, SIAM Rev., 53 (2011), pp. 3-39, https://doi.org/10.1137/090757009. · Zbl 1215.34015
[17] J. Nelder and R. Mead, A simplex method for function minimization, Comput. J., 7 (1965), pp. 308-313. · Zbl 0229.65053
[18] S. Pei, S. Kandula, and J. Shaman, Differential Effects of Intervention Timing on COVID-19 Spread in the United States, preprint, medRxiv, 2020.
[19] A. Raue, J. Karlsson, M. P. Saccomani, M. Jirstrand, and J. Timmer, Comparison of approaches for parameter identifiability analysis of biological systems, Bioinformatics, 30 (2014), pp. 1440-1448, https://doi.org/10.1093/bioinformatics/btu006.
[20] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmüller, and J. Timmer, Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood, Bioinformatics, 25 (2009), pp. 1923-1929, https://doi.org/10.1093/bioinformatics/btp358.
[21] K. Roosa and G. Chowell, Assessing parameter identifiability in compartmental dynamic models using a computational approach: Application to infectious disease transmission models, Theoret. Biol. Med. Model., 16 (2019), 1.
[22] S. J. Schiff, Neural Control Engineering: The Emerging Intersection Between Control Theory and Neuroscience, Computational neuroscience, MIT Press, 2011, https://doi.org/10.7551/mitpress/8436.001.0001.
[23] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, John Wiley & Sons, 2006.
[24] A. Villaverde and J. Banga, Dynamical compensation and structural identifiability of biological models: Analysis, implications, and reconciliation, PLoS Comput. Biol., 13 (2017), e1005878.
[25] A. Villaverde, N. Tsiantis, and J. Banga, Full observability and estimation of unknown inputs, states and parameters of nonlinear biological models, J. R. Soc. Interface, 16 (2019), 20190043.
[26] A. F. Villaverde, A. Barreiro, and A. Papachristodoulou, Structural identifiability of dynamic systems biology models, PLoS Comput. Biol., 12 (2016), e1005153.
[27] E. Walter and Y. Lecourtier, Unidentifiable compartmental models: What to do?, Math. Biosci., 56 (1981), pp. 1-25. · Zbl 0465.93028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.