×

High-order arbitrary Lagrangian-Eulerian discontinuous Galerkin methods for the incompressible Navier-Stokes equations. (English) Zbl 07506519

Summary: This paper develops robust discontinuous Galerkin methods for the incompressible Navier-Stokes equations on moving meshes. High-order accurate arbitrary Lagrangian-Eulerian formulations are proposed in a unified framework for both coupled as well as projection or splitting-type Navier-Stokes solvers. The framework is flexible, allows implicit and explicit formulations of the convective term, and adaptive time-stepping. The Navier-Stokes equations with ALE transport term are solved on the deformed geometry storing one instance of the mesh that is updated from one time step to the next. Discretization in space is applied to the time discrete equations so that all weak forms and mass matrices are evaluated at the end of the current time step. This design ensures that the proposed formulations fulfill the geometric conservation law automatically, as is shown theoretically and demonstrated numerically by the example of the free-stream preservation test. We discuss the peculiarities related to the imposition of boundary conditions in intermediate steps of projection-type methods and the ingredients needed to preserve high-order accuracy. We show numerically that the formulations proposed in this work maintain the formal order of accuracy of the Navier-Stokes solvers in both space and time. Moreover, we demonstrate robustness and accuracy for under-resolved turbulent flows. The implementation is based on fast matrix-free operator evaluation in order to devise computationally efficient algorithms.

MSC:

76Mxx Basic methods in fluid mechanics
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Dxx Incompressible viscous fluids

References:

[1] Wall, W. A.; Gerstenberger, A.; Gamnitzer, P.; Förster, C.; Ramm, E., Large deformation fluid-structure interaction – advances in ALE methods and new fixed grid approaches, (Bungartz, H.-J.; Schäfer, M., Fluid-Structure Interaction (2006), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 195-232 · Zbl 1323.74097
[2] Schott, B.; Ager, C.; Wall, W., A monolithic approach to fluid-structure interaction based on a hybrid Eulerian-ALE fluid domain decomposition involving cut elements, Int. J. Numer. Methods Eng., 119, 3, 208-237 (2019) · Zbl 07845171
[3] Hirt, C.; Amsden, A.; Cook, J., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14, 3, 227-253 (1974) · Zbl 0292.76018
[4] Donea, J.; Giuliani, S.; Halleux, J., An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions, Comput. Methods Appl. Mech. Eng., 33, 1, 689-723 (1982) · Zbl 0508.73063
[5] Donea, J.; Huerta, A.; Ponthot, J.-P.; Rodríguez-Ferran, A., Arbitrary Lagrangian-Eulerian Methods, 1-23 (2017), American Cancer Society
[6] Donea, J.; Fasoli-Stella, P.; Giuliani, S., Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems, Therm. Fluid/Struct. Dyn. Anal. (1977)
[7] Hughes, T. J.; Liu, W. K.; Zimmermann, T. K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. Methods Appl. Mech. Eng., 29, 3, 329-349 (1981) · Zbl 0482.76039
[8] Ho, L.-W.; Patera, A. T., A Legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows, Comput. Methods Appl. Mech. Eng., 80, 1, 355-366 (1990) · Zbl 0722.76052
[9] Beskok, A.; Warburton, T. C., An unstructured hp finite-element scheme for fluid flow and heat transfer in moving domains, J. Comput. Phys., 174, 2, 492-509 (2001) · Zbl 0995.76043
[10] Lesoinne, M.; Farhat, C., Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations, Comput. Methods Appl. Mech. Eng., 134, 1, 71-90 (1996) · Zbl 0896.76044
[11] Lomtev, I.; Kirby, R.; Karniadakis, G., A discontinuous Galerkin ALE method for compressible viscous flows in moving domains, J. Comput. Phys., 155, 1, 128-159 (1999) · Zbl 0956.76046
[12] Nguyen, V.-T., An arbitrary Lagrangian-Eulerian discontinuous Galerkin method for simulations of flows over variable geometries, J. Fluids Struct., 26, 2, 312-329 (2010)
[13] Mavriplis, D. J.; Nastase, C. R., On the geometric conservation law for high-order discontinuous Galerkin discretizations on dynamically deforming meshes, Special Issue High Order Methods for CFD Problems. Special Issue High Order Methods for CFD Problems, J. Comput. Phys., 230, 11, 4285-4300 (2011) · Zbl 1220.65138
[14] Persson, P.-O.; Bonet, J.; Peraire, J., Discontinuous Galerkin solution of the Navier-Stokes equations on deformable domains, Comput. Methods Appl. Mech. Eng., 198, 1585-1595 (2009) · Zbl 1227.76038
[15] Schnücke, G.; Krais, N.; Bolemann, T.; Gassner, G. J., Entropy stable discontinuous Galerkin schemes on moving meshes with summation-by-parts property for hyperbolic conservation laws (2018), arXiv preprint
[16] Ferrer, E.; Willden, R. H.J., A high order discontinuous Galerkin - Fourier incompressible 3D Navier—Stokes solver with rotating sliding meshes, J. Comput. Phys., 231, 21, 7037-7056 (2012) · Zbl 1284.35311
[17] Wang, Y.; Quaini, A.; Čanić, S., A higher-order discontinuous Galerkin/arbitrary Lagrangian Eulerian partitioned approach to solving fluid-structure interaction problems with incompressible, viscous fluids and elastic structures, J. Sci. Comput., 76, 1, 481-520 (2018) · Zbl 1404.65183
[18] Thomas, P. D.; Lombard, C. K., Geometric conservation law and its application to flow computations on moving grids, AIAA J., 17, 10, 1030-1037 (1979) · Zbl 0436.76025
[19] Farhat, C.; Geuzaine, P., Design and analysis of robust ALE time-integrators for the solution of unsteady flow problems on moving grids, The Arbitrary Lagrangian-Eulerian Formulation. The Arbitrary Lagrangian-Eulerian Formulation, Comput. Methods Appl. Mech. Eng., 193, 39, 4073-4095 (2004) · Zbl 1068.76063
[20] Förster, C.; Wall, W. A.; Ramm, E., On the geometric conservation law in transient flow calculations on deforming domains, Int. J. Numer. Methods Fluids, 50, 12, 1369-1379 (2006) · Zbl 1097.76049
[21] Étienne, S.; Garon, A.; Pelletier, D., Perspective on the geometric conservation law and finite element methods for ALE simulations of incompressible flow, J. Comput. Phys., 228, 7, 2313-2333 (2009) · Zbl 1275.76159
[22] Cockburn, B.; Kanschat, G.; Schötzau, D., A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comput., 74, 251, 1067-1095 (2005) · Zbl 1069.76029
[23] Cockburn, B.; Kanschat, G.; Schötzau, D., A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations, J. Sci. Comput., 31, 1, 61-73 (2007) · Zbl 1151.76527
[24] Cockburn, B.; Kanschat, G.; Schötzau, D., An equal-order DG method for the incompressible Navier-Stokes equations, J. Sci. Comput., 40, 1-3, 188-210 (2009) · Zbl 1203.76080
[25] Bassi, F.; Crivellini, A.; Pietro, D. D.; Rebay, S., An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations, J. Comput. Phys., 218, 2, 794-815 (2006) · Zbl 1158.76313
[26] Shahbazi, K.; Fischer, P. F.; Ethier, C. R., A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations, J. Comput. Phys., 222, 1, 391-407 (2007) · Zbl 1216.76034
[27] Hesthaven, J. S.; Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (2007), Springer
[28] Botti, L.; Pietro, D. A.D., A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure, J. Comput. Phys., 230, 3, 572-585 (2011) · Zbl 1283.76030
[29] Ferrer, E.; Willden, R. H.J., A high order discontinuous Galerkin finite element solver for the incompressible Navier-Stokes equations, Comput. Fluids, 46, 1, 224-230 (2011) · Zbl 1431.76011
[30] Klein, B.; Kummer, F.; Oberlack, M., A SIMPLE based discontinuous Galerkin solver for steady incompressible flows, J. Comput. Phys., 237, 235-250 (2013) · Zbl 1286.76124
[31] Ferrer, E., An interior penalty stabilised incompressible discontinuous Galerkin-Fourier solver for implicit large eddy simulations, J. Comput. Phys., 348, 754-775 (2017) · Zbl 1380.76018
[32] Steinmoeller, D. T.; Stastna, M.; Lamb, K. G., A short note on the discontinuous Galerkin discretization of the pressure projection operator in incompressible flow, J. Comput. Phys., 251, 480-486 (2013) · Zbl 1349.65488
[33] Joshi, S. M.; Diamessis, P. J.; Steinmoeller, D. T.; Stastna, M.; Thomsen, G. N., A post-processing technique for stabilizing the discontinuous pressure projection operator in marginally-resolved incompressible inviscid flow, 13th USNCCM International Symposium of High-Order Methods for Computational Fluid Dynamics - a Special Issue Dedicated to the 60th Birthday of Professor David Kopriva. 13th USNCCM International Symposium of High-Order Methods for Computational Fluid Dynamics - a Special Issue Dedicated to the 60th Birthday of Professor David Kopriva, Comput. Fluids, 139, 120-129 (2016) · Zbl 1390.76325
[34] Krank, B.; Fehn, N.; Wall, W. A.; Kronbichler, M., A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow, J. Comput. Phys., 348, 634-659 (2017) · Zbl 1380.76040
[35] Fehn, N.; Wall, W. A.; Kronbichler, M., Robust and efficient discontinuous Galerkin methods for under-resolved turbulent incompressible flows, J. Comput. Phys., 372, 667-693 (2018) · Zbl 1415.76451
[36] Lehrenfeld, C.; Schöberl, J., High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows, Comput. Methods Appl. Mech. Eng., 307, 339-361 (2016) · Zbl 1439.76081
[37] Schroeder, P. W.; Lube, G., Divergence-free H(div)-FEM for time-dependent incompressible flows with applications to high Reynolds number vortex dynamics, J. Sci. Comput., 75, 2, 830-858 (2018) · Zbl 1392.35210
[38] Rhebergen, S.; Wells, G. N., A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field, J. Sci. Comput., 76, 3, 1484-1501 (2018) · Zbl 1397.76077
[39] Schroeder, P. W.; Lube, G., Stabilised dG-FEM for incompressible natural convection flows with boundary and moving interior layers on non-adapted meshes, J. Comput. Phys., 335, 760-779 (2017) · Zbl 1380.65286
[40] Akbas, M.; Linke, A.; Rebholz, L. G.; Schroeder, P. W., The analogue of grad-div stabilization in DG methods for incompressible flows: limiting behavior and extension to tensor-product meshes, Comput. Methods Appl. Mech. Eng., 341, 917-938 (2018) · Zbl 1440.76047
[41] Fehn, N.; Kronbichler, M.; Lehrenfeld, C.; Lube, G.; Schroeder, P. W., High-order DG solvers for under-resolved turbulent incompressible flows: a comparison of \(L^2\) and H(div) methods, Int. J. Numer. Methods Fluids, 91, 11, 533-556 (2019)
[42] Gassner, G. J., A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J. Sci. Comput., 35, 3, A1233-A1253 (2013) · Zbl 1275.65065
[43] Kreiss, H.-O.; Scherer, G., Finite element and finite difference methods for hyperbolic partial differential equations, (de Boor, C., Mathematical Aspects of Finite Elements in Partial Differential Equations (1974), Academic Press), 195-212 · Zbl 0355.65085
[44] Fisher, T. C.; Carpenter, M. H., High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains, J. Comput. Phys., 252, 518-557 (2013) · Zbl 1349.65293
[45] Orszag, S. A.; Israeli, M.; Deville, M. O., Boundary conditions for incompressible flows, J. Sci. Comput., 1, 1, 75-111 (1986) · Zbl 0648.76023
[46] Karniadakis, G. E.; Israeli, M.; Orszag, S. A., High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 97, 2, 414-443 (1991) · Zbl 0738.76050
[47] Fehn, N.; Wall, W. A.; Kronbichler, M., On the stability of projection methods for the incompressible Navier-Stokes equations based on high-order discontinuous Galerkin discretizations, J. Comput. Phys., 351, 392-421 (2017) · Zbl 1380.65204
[48] Xu, L.; Xu, X.; Ren, X.; Guo, Y.; Feng, Y.; Yang, X., Stability evaluation of high-order splitting method for incompressible flow based on discontinuous velocity and continuous pressure, Adv. Mech. Eng., 11, 10, Article 1687814019855586 pp. (2019)
[49] Sheldon, J. P.; Miller, S. T.; Pitt, J. S., A hybridizable discontinuous Galerkin method for modeling fluid-structure interaction, J. Comput. Phys., 326, 91-114 (2016) · Zbl 1373.74042
[50] Neunteufel, M.; Schöberl, J., Fluid-structure interaction with H(div)-conforming finite elements, Comput. Struct., 243, Article 106402 pp. (2021)
[51] Fu, G., Arbitrary Lagrangian-Eulerian hybridizable discontinuous Galerkin methods for incompressible flow with moving boundaries and interfaces, Comput. Methods Appl. Mech. Eng., 367, Article 113158 pp. (2020) · Zbl 1442.76066
[52] Rhebergen, S.; Cockburn, B., A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains, J. Comput. Phys., 231, 11, 4185-4204 (2012) · Zbl 1426.76298
[53] Horváth, T. L.; Rhebergen, S., A locally conservative and energy-stable finite-element method for the Navier-Stokes problem on time-dependent domains, Int. J. Numer. Methods Fluids, 89, 12, 519-532 (2019)
[54] Kronbichler, M.; Wall, W. A., A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, SIAM J. Sci. Comput., 40, 5, A3423-A3448 (2018) · Zbl 1402.65163
[55] Kronbichler, M.; Kormann, K., Fast matrix-free evaluation of discontinuous Galerkin finite element operators, ACM Trans. Math. Softw., 45, 3, Article 29 pp. (2019) · Zbl 1486.65253
[56] Ibeid, H.; Olson, L.; Gropp, W., FFT, FMM, and multigrid on the road to exascale: performance challenges and opportunities, J. Parallel Distrib. Comput., 136, 63-74 (2020)
[57] Ichimura, T.; Fujita, K.; Quinay, P. E.B.; Maddegedara, L.; Hori, M.; Tanaka, S.; Shizawa, Y.; Kobayashi, H.; Minami, K., Implicit nonlinear wave simulation with 1.08T DOF and 0.270T unstructured finite elements to enhance comprehensive earthquake simulation, (SC’15: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (2015)), 1-12
[58] Gmeiner, B.; Rüde, U.; Stengel, H.; Waluga, C.; Wohlmuth, B., Performance and scalability of hierarchical hybrid multigrid solvers for Stokes systems, SIAM J. Sci. Comput., 37, 2, C143-C168 (2015) · Zbl 1320.65188
[59] Fischer, P.; Min, M.; Rathnayake, T.; Dutta, S.; Kolev, T.; Dobrev, V.; Camier, J.-S.; Kronbichler, M.; Warburton, T.; Świrydowicz, K.; Brown, J., Scalability of high-performance PDE solvers, Int. J. High Perform. Comput. Appl., 34, 5, 562-586 (2020)
[60] Fehn, N.; Wall, W. A.; Kronbichler, M., Efficiency of high-performance discontinuous Galerkin spectral element methods for under-resolved turbulent incompressible flows, Int. J. Numer. Methods Fluids, 88, 1, 32-54 (2018)
[61] Gassner, G. J.; Beck, A. D., On the accuracy of high-order discretizations for underresolved turbulence simulations, Theor. Comput. Fluid Dyn., 27, 3, 221-237 (2013)
[62] Moura, R.; Mengaldo, G.; Peiró, J.; Sherwin, S., On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES / under-resolved DNS of Euler turbulence, J. Comput. Phys., 330, 615-623 (2017) · Zbl 1378.76036
[63] Cantwell, C.; Moxey, D.; Comerford, A.; Bolis, A.; Rocco, G.; Mengaldo, G.; Grazia, D. D.; Yakovlev, S.; Lombard, J.-E.; Ekelschot, D.; Jordi, B.; Xu, H.; Mohamied, Y.; Eskilsson, C.; Nelson, B.; Vos, P.; Biotto, C.; Kirby, R.; Sherwin, S., Nektar++: an open-source spectral/hp element framework, Comput. Phys. Commun., 192, 205-219 (2015) · Zbl 1380.65465
[64] Fischer, P.; Kerkemeier, S.; Peplinski, A.; Shaver, D.; Tomboulides, A.; Min, M.; Obabko, A.; Merzari, E., NEK5000 web page (2020)
[65] Arndt, D.; Bangerth, W.; Davydov, D.; Heister, T.; Heltai, L.; Kronbichler, M.; Maier, M.; Pelteret, J.-P.; Turcksin, B.; Wells, D., The deal.II finite element library: design, features, and insights, Comput. Math. Appl. (2020), in press
[66] Donea, J.; Huerta, A., Finite Element Methods for Flow Problems (2003), John Wiley & Sons
[67] Guermond, J. L.; Minev, P.; Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng., 195, 44-47, 6011-6045 (2006) · Zbl 1122.76072
[68] Karniadakis, G. E.; Sherwin, S. J., Spectral/hp Element Methods for Computational Fluid Dynamics (2013), Oxford University Press · Zbl 1256.76003
[69] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comput., 22, 104, 745-762 (1968) · Zbl 0198.50103
[70] Hirt, C.; Cook, J., Calculating three-dimensional flows around structures and over rough terrain, J. Comput. Phys., 10, 2, 324-340 (1972) · Zbl 0251.76017
[71] Goda, K., A multistep technique with implicit difference schemes for calculating two-or three-dimensional cavity flows, J. Comput. Phys., 30, 1, 76-95 (1979) · Zbl 0405.76017
[72] Van Kan, J., A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Stat. Comput., 7, 3, 870-891 (1986) · Zbl 0594.76023
[73] Timmermans, L.; Minev, P.; Van De Vosse, F., An approximate projection scheme for incompressible flow using spectral elements, Int. J. Numer. Methods Fluids, 22, 7, 673-688 (1996) · Zbl 0865.76070
[74] Guermond, J.; Shen, J., On the error estimates for the rotational pressure-correction projection methods, Math. Comput., 73, 248, 1719-1737 (2004) · Zbl 1093.76050
[75] Wang, D.; Ruuth, S. J., Variable step-size implicit-explicit linear multistep methods for time-dependent partial differential equations, J. Comput. Math., 838-855 (2008) · Zbl 1174.65037
[76] Escobar-Vargas, J. A.; Diamessis, P. J.; Sakai, T., A spectral quadrilateral multidomain penalty method model for high Reynolds number incompressible stratified flows, Int. J. Numer. Methods Fluids, 75, 6, 403-425 (2014) · Zbl 1455.65167
[77] Gao, P.; Ouyang, J.; Dai, P.; Zhou, W., A coupled continuous and discontinuous finite element method for the incompressible flows, Int. J. Numer. Methods Fluids, 84, 8, 477-493 (2017)
[78] Ferrer, E.; Moxey, D.; Willden, R. H.J.; Sherwin, S. J., Stability of projection methods for incompressible flows using high order pressure-velocity pairs of same degree: continuous and discontinuous Galerkin formulations, Commun. Comput. Phys., 16, 817-840 (2014)
[79] Leriche, E.; Perchat, E.; Labrosse, G.; Deville, M. O., Numerical evaluation of the accuracy and stability properties of high-order direct Stokes solvers with or without temporal splitting, J. Sci. Comput., 26, 1, 25-43 (2006) · Zbl 1141.76047
[80] Fehn, N.; Munch, P.; Wall, W. A.; Kronbichler, M., Hybrid multigrid methods for high-order discontinuous Galerkin discretizations, J. Comput. Phys., 415, Article 109538 pp. (2020) · Zbl 1440.65135
[81] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 5, 1749-1779 (2002) · Zbl 1008.65080
[82] Hillewaert, K., Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries (2013), Univ. de Louvain, Ph.D. thesis
[83] Geuzaine, P.; Grandmont, C.; Farhat, C., Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations, J. Comput. Phys., 191, 1, 206-227 (2003) · Zbl 1051.76038
[84] Onsager, L., Statistical hydrodynamics, Il Nuovo Cimento (1943-1954), 6, 279-287 (1949)
[85] Fehn, N.; Kronbichler, M.; Munch, P.; Wall, W. A., Numerical evidence of anomalous energy dissipation in incompressible Euler flows: towards grid-converged results for the inviscid Taylor-Green problem (2020), arXiv preprint · Zbl 1515.76125
[86] Durufle, M.; Grob, P.; Joly, P., Influence of Gauss and Gauss-Lobatto quadrature rules on the accuracy of a quadrilateral finite element method in the time domain, Numer. Methods Partial Differ. Equ., 25, 3, 526-551 (2009) · Zbl 1167.65057
[87] Alzetta, G.; Arndt, D.; Bangerth, W.; Boddu, V.; Brands, B.; Davydov, D.; Gassmoeller, R.; Heister, T.; Heltai, L.; Kormann, K.; Kronbichler, M.; Maier, M.; Pelteret, J.-P.; Turcksin, B.; Wells, D., The deal.II library, version 9.0, J. Numer. Math., 26, 4, 173-184 (2018) · Zbl 1410.65363
[88] Moxey, D.; Amici, R.; Kirby, M., Efficient matrix-free high-order finite element evaluation for simplicial elements, SIAM J. Sci. Comput., 42, 3, C97-C123 (2020) · Zbl 1440.65223
[89] Karniadakis, G. E.; Sherwin, S. J., Spectral/hp Element Methods for Computational Fluid Dynamics (2005), Oxford University Press · Zbl 1116.76002
[90] Taylor, G.; Green, A., Mechanism of the production of small eddies from large ones, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 158, 895, 499-521 (1937) · JFM 63.1358.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.