×

A monolithic approach to fluid-structure interaction based on a hybrid Eulerian-ALE fluid domain decomposition involving cut elements. (English) Zbl 07845171

Summary: A novel method for complex fluid-structure interaction (FSI) involving large structural deformation and motion is proposed. The new approach is based on a hybrid fluid formulation that combines the advantages of purely Eulerian (fixed-grid) and arbitrary Lagrangian-Eulerian (ALE) moving mesh formulations in the context of FSI. The structure, as commonly given in Lagrangian description, is surrounded by a fine resolved layer of fluid elements based on an ALE-framework. This ALE-fluid patch, which is embedded in a Eulerian background fluid domain, follows the deformation and motion of the structural interface. This approximation technique is not limited to finite element methods but can also be realized within other frameworks like finite volume or discontinuous Galerkin methods. In this work, the surface coupling between the two disjoint fluid subdomains is imposed weakly using a stabilized Nitsche’s technique in a cut finite element method (CutFEM) framework. At the fluid-solid interface, standard weak coupling of node-matching or nonmatching finite element approximations can be utilized. As the fluid subdomains can be meshed independently, a sufficient mesh quality in the vicinity of the common fluid-structure interface can be assured. To our knowledge, the proposed method is the only method (despite some overlapping domain decomposition approaches that suffer from other issues) that allows for capturing boundary layers and flow detachment via appropriate grids around largely moving and deforming bodies. In contrast to other methods, it is possible to do this, eg, without the necessity of costly remeshing procedures. A clear advantage over existing overlapping domain decomposition methods consists in the sharp splitting of the fluid domain, which comes along with improved convergence behavior of the resulting monolithic FSI system. In addition, it might also help to save computational costs as now background grids can be much coarser. Various FSI-cases of rising complexity conclude the work. For validation purpose, results have been compared to simulations using a classical ALE-fluid description or purely fixed-grid CutFEM-based schemes.
{© 2019 John Wiley & Sons, Ltd.}

MSC:

74Sxx Numerical and other methods in solid mechanics
74Fxx Coupling of solid mechanics with other effects
76Mxx Basic methods in fluid mechanics

Software:

CutFEM

References:

[1] HirtCW, AmsdenAA, CookJL. An arbitrary Lagrangian‐Eulerian computing method for all flow speeds. J Comput Phys. 1974;14(3):227‐253. · Zbl 0292.76018
[2] BelytschkoT, KennedyJM. Computer models for subassembly simulation. Nucl Eng Des. 1978;49(1‐2):17‐38.
[3] BelytschkoT, KennedyJM, SchoeberleDF. Quasi‐Eulerian finite element formulation for fluid‐structure interaction. J Press Vessel Technol. 1980;102(1):62‐69.
[4] HughesTJR, LiuWK, ZimmermannTK. Lagrangian‐Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng. 1981;29(3):329‐349. · Zbl 0482.76039
[5] DonéaJ, Fasoli‐StellaP, GiulianiS. Lagrangian and Eulerian finite element techniques for transient fluid‐structure interaction problems. Fourth International Conference on Structural Mechanics in Reactor Technology; 1977; San Francisco, CA.
[6] DonéaJ, GiulianiS, HalleuxJP. An arbitrary Lagrangian‐Eulerian finite element method for transient dynamic fluid‐structure interactions. Comput Methods Appl Mech Eng. 1982;33(1‐3):689‐723. · Zbl 0508.73063
[7] WallWA, GerstenbergerA, GamnitzerP, FörsterC, RammE. Large deformation fluid‐structure interaction-advances in ALE methods and new fixed grid approaches. In: Fluid‐Structure Interaction.Berlin, Germany: Springer‐Verlag Berlin Heidelberg; 2006:195‐232. · Zbl 1323.74097
[8] WallWA, GamnitzerP, GerstenbergerA. Fluid‐structure interaction approaches on fixed grids based on two different domain decomposition ideas. Int J Comput Fluid Dyn. 2008;22(6):411‐427. · Zbl 1184.76732
[9] BurmanE, FernándezMA. An unfitted Nitsche method for incompressible fluid-structure interaction using overlapping meshes. Comput Methods Appl Mech Eng. 2014;279:497‐514. · Zbl 1423.74867
[10] FernándezMA, LandajuelaM. Unfitted Mesh Formulations and Splitting Schemes for Incompressible Fluid/Thin‐Walled Structure Interaction. Research Report n° 8908. Paris, France: Inria; 2016. https://hal.inria.fr/hal-01309462/file/RR-8908.pdf
[11] GerstenbergerA, WallWA. Enhancement of fixed‐grid methods towards complex fluid‐structure interaction applications. Int J Numer Methods Fluids. 2008;57(9):1227‐1248. · Zbl 1338.74038
[12] VerfürthR. A posteriori error estimation and adaptive mesh‐refinement techniques. J Comp Appl Math. 1994;50(1):67‐83. · Zbl 0811.65089
[13] KlöppelT, PoppA, KüttlerU, WallWA. Fluid-structure interaction for non‐conforming interfaces based on a dual mortar formulation. Comput Methods Appl Mech Eng. 2011;200(45‐46):3111‐3126. · Zbl 1230.74185
[14] BehrM, TezduyarT. The shear‐slip mesh update method. Comput Methods Appl Mech Eng. 1999;174(3‐4):261‐274. · Zbl 0959.76037
[15] FarhatC, LakshminarayanVK. An ALE formulation of embedded boundary methods for tracking boundary layers in turbulent fluid‐structure interaction problems. J Comput Phys. 2014;263:53‐70. · Zbl 1349.76117
[16] WangZJ, ParthasarathyV. A fully automated Chimera methodology for multiple moving body problems. Int J Numer Methods Fluids. 2000;33(7):919‐938. · Zbl 0984.76073
[17] HouzeauxG, CodinaR. A Chimera method based on a Dirichlet/Neumann(Robin) coupling for the Navier-Stokes equations. Comput Methods Appl Mech Eng. 2003;192(31‐32):3343‐3377. · Zbl 1054.76049
[18] StegerJL, DoughertyFC, BenekJA. A chimera grid scheme: advances in grid generation. Am Soc Mech Eng Fluids Eng Div. 1983;5:59‐69.
[19] ShahmiriS, GerstenbergerA, WallWA. An XFEM‐based embedding mesh technique for incompressible viscous flows. Int J Numer Methods Fluids. 2011;65(1‐3):166‐190. · Zbl 1428.76103
[20] MassingA, LarsonMG, LoggA, RognesME. A Nitsche‐based cut finite element method for a fluid‐structure interaction problem. Commun Appl Math Comput Sci. 2015;10(2):97‐120. · Zbl 1326.74122
[21] SchottB, ShahmiriS, KruseR, WallWA. A stabilized Nitsche‐type extended embedding mesh approach for 3D low‐ and high‐Reynolds‐number flows. Int J Numer Methods Fluids. 2016;82(6):289‐315.
[22] BurmanE, ClausS, HansboP, LarsonMG, MassingA. CutFEM: discretizing geometry and partial differential equations. Int J Numer Methods Eng. 2015;104(7):472‐501. · Zbl 1352.65604
[23] SchottB, RasthoferU, GravemeierV, WallWA. A face‐oriented stabilized Nitsche‐type extended variational multiscale method for incompressible two‐phase flow. Int J Numer Methods Eng. 2015;104(7):721‐748. · Zbl 1352.76067
[24] RasthoferU, HenkeF, WallWA, GravemeierV. An extended residual‐based variational multiscale method for two‐phase flow including surface tension. Comput Methods Appl Mech Eng. 2011;200(21‐22):1866‐1876. · Zbl 1228.76118
[25] KrankB, WallWA. A new approach to wall modeling in LES of incompressible flow via function enrichment. J Comput Phys. 2016;316:94‐116. · Zbl 1349.76120
[26] ChessaJ, BelytschkoT. An extended finite element method for two‐phase fluids. J Appl Mech. 2003;70(1):10‐17. · Zbl 1110.74391
[27] NitscheJ. Über ein variationsprinzip zur lösung von Dirichlet‐problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 1971;36(1):9‐15. · Zbl 0229.65079
[28] BurmanE, HansboP. Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl Numer Math. 2012;62(4):328‐341. · Zbl 1316.65099
[29] BurmanE, HansboP. Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem. ESAIM Math Model Numer Anal. 2014;48(3):859‐874. · Zbl 1416.65437
[30] SchottB, WallWA. A new face‐oriented stabilized XFEM approach for 2D and 3D incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng. 2014;276:233‐265. · Zbl 1423.76273
[31] MassingA, SchottB, WallWA. A stabilized Nitsche cut finite element method for the Oseen problem. Comput Methods Appl Mech Eng. 2018;328:262‐300. · Zbl 1439.76087
[32] WinterM, SchottB, MassingA, WallWA. A Nitsche cut finite element method for the Oseen problem with general Navier boundary conditions. Comput Methods Appl Mech Eng. 2018;330:220‐252. · Zbl 1439.76102
[33] KüttlerU, GeeM, FörsterC, ComerfordA, WallWA. Coupling strategies for biomedical fluid‐structure interaction problems. Int J Numer Methods Biomed Eng. 2010;26(3‐4):305‐321. · Zbl 1183.92008
[34] GeeMW, KüttlerU, WallWA. Truly monolithic algebraic multigrid for fluid‐structure interaction. Int J Numer Methods Eng. 2011;85(8):987‐1016. · Zbl 1217.74121
[35] WohlmuthBI. A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Num Anal. 2001;38(3):989‐1012. · Zbl 0974.65105
[36] BurmanE, FernándezMA. Stabilized explicit coupling for fluid-structure interaction using Nitsche’s method. Comptes Rendus Mathématique. 2007;345(8):467‐472. · Zbl 1126.74047
[37] BazilevsY, HughesTJR. Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids. 2007;36(1):12‐26. · Zbl 1115.76040
[38] BurmanE, FernándezMA, HansboP. Continuous interior penalty finite element method for Oseen’s equations. SIAM J Numer Anal. 2006;44(3):1248‐1274. · Zbl 1344.76049
[39] SchottB, AgerC, WallW. Monolithic cut finite element approaches for fluid‐structure interaction. 2018. arXiv preprint arXiv:1807.11379.
[40] DoneaJ, HuertaA. Finite Element Methods for Flow Problems. Chichester, UK: John Wiley & Sons Ltd; 2003.
[41] WriggersP. Nonlinear Finite Element Methods. Berlin, Germany: Springer‐Verlag Berlin Heidelberg; 2008. · Zbl 1153.74001
[42] ZienkiewiczOC, TaylorRL. The Finite Element Method: Solid Mechanics. 5th ed. Oxford, UK: Butterworth‐Heinemann; 2000. · Zbl 0991.74003
[43] HansboA, HansboP, LarsonMG. A finite element method on composite grids based on Nitsche’s method. ESAIM Math Model Numer Anal. 2003;37(3):495‐514. · Zbl 1031.65128
[44] HughesTJR, ScovazziG, FrancaLP. Multiscale and stabilized methods. In: Encyclopedia of Computational Mechanics. Chichester, UK: John Wiley & Sons; 2007.
[45] BraackM, BurmanE, JohnV, LubeG. Stabilized finite element methods for the generalized Oseen problem. Comput Methods Appl Mech Eng. 2007;196(4‐6):853‐866. · Zbl 1120.76322
[46] RoosHG, StynesM, TobiskaL. Robust Numerical Methods for Singularly Perturbed Differential Equations. Berlin, Germany: Springer‐Verlag Berlin Heidelberg; 2008. Springer Series in Computational Mathematics; vol. 21. · Zbl 1155.65087
[47] BeckerR, BurmanE, HansboP. A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity. Comput Methods Appl Mech Eng. 2009;198(41‐44):3352‐3360. · Zbl 1230.74169
[48] BurmanE. Ghost penalty. Comptes Rendus Mathématique. 2010;348(21‐22):1217‐1220. · Zbl 1204.65142
[49] ChungJ, HulbertGM. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized‐α method. J Appl Mech. 1993;60(2):371‐375. · Zbl 0775.73337
[50] MayrM, KlöppelT, WallWA, GeeMW. A temporal consistent monolithic approach to fluid‐structure interaction enabling single field predictors. SIAM J Sci Comput. 2015;37(1):B30‐B59. · Zbl 1330.74159
[51] RammE, WallWA. Fluid‐structure interaction based upon a stabilized (ALE) finite element method, computational mechanics‐new trends and applications. In: IdelsohnSR (ed.), OñateE (ed.), DvorkinEN (ed.), eds. Proceedings of the 4th World Congress on Computational Mechanics: New Trends and Applications, CIMNE; 1998; Barcelona, Spain.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.