×

The SAGEX review on scattering amplitudes chapter 5: analytic bootstraps for scattering amplitudes and beyond. (English) Zbl 1520.81134

Summary: One of the main challenges in obtaining predictions for collider experiments from perturbative quantum field theory, is the direct evaluation of the Feynman integrals it gives rise to. In this chapter, we review an alternative bootstrap method that instead efficiently constructs physical quantities by exploiting their analytic structure. We present in detail the setting where this method has been originally developed, six- and seven-particle amplitudes in the large-color limit of \(\mathcal{N} = 4\) super Yang-Mills theory. We discuss the class of functions these amplitudes belong to, and the strong clues mathematical objects known as cluster algebras provide for rendering this function space both finite and of relatively small dimension at each loop order. We then describe how to construct this function space, as well as how to locate the amplitude inside of it with the help of kinematic limits, and apply the general procedure to a concrete example: the determination of the two-loop correction to the first nontrivial six-particle amplitude. We also provide an overview of other areas where the realm of the bootstrap paradigm is expanding, including other scattering amplitudes, form factors and Feynman integrals, and point out the analytic properties of potentially wider applicability that it has revealed.

MSC:

81T18 Feynman diagrams
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81T13 Yang-Mills and other gauge theories in quantum field theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T32 Matrix models and tensor models for quantum field theory
81V17 Gravitational interaction in quantum theory
81U20 \(S\)-matrix theory, etc. in quantum theory
13F60 Cluster algebras

References:

[1] White, A. R. (2000)
[2] Dixon, L. J.; Drummond, J. M.; Henn, J. M., J. High Energy Phys. (2011) · Zbl 1306.81092 · doi:10.1007/JHEP11(2011)023
[3] Bern, Z.; Dixon, L. J.; Smirnov, V. A., Phys. Rev. D, 72 (2005) · doi:10.1103/physrevd.72.085001
[4] Alday, L. F.; Maldacena, J., J. High Energy Phys. (2007) · doi:10.1088/1126-6708/2007/06/064
[5] Alday, L. F.; Maldacena, J., J. High Energy Phys. (2009) · doi:10.1088/1126-6708/2009/11/082
[6] Alday, L. F.; Gaiotto, D.; Maldacena, J., J. High Energy Phys. (2011) · Zbl 1301.81162 · doi:10.1007/JHEP09(2011)032
[7] Alday, L. F.; Maldacena, J.; Sever, A.; Vieira, P., J. Phys. A: Math. Theor., 43 (2010) · Zbl 1204.81134 · doi:10.1088/1751-8113/43/48/485401
[8] Maldacena, J., Adv. Theor. Math. Phys., 2, 231-252 (1998) · Zbl 0914.53047 · doi:10.4310/atmp.1998.v2.n2.a1
[9] Dixon, L. J.; Drummond, J. M.; Henn, J. M., J. High Energy Phys. (2012) · Zbl 1306.81093 · doi:10.1007/JHEP01(2012)024
[10] Dixon, L. J.; Drummond, J. M.; von Hippel, M.; Pennington, J., J. High Energy Phys. (2013) · Zbl 1342.81159 · doi:10.1007/JHEP12(2013)049
[11] Dixon, L. J.; Drummond, J. M.; Duhr, C.; Pennington, J., J. High Energy Phys. (2014) · doi:10.1007/jhep06(2014)116
[12] Dixon, L. J.; von Hippel, M., J. High Energy Phys. (2014) · doi:10.1007/JHEP10(2014)065
[13] Dixon, L. J.; von Hippel, M.; McLeod, A. J., J. High Energy Phys. (2016) · doi:10.1007/JHEP01(2016)053
[14] Caron-Huot, S.; Dixon, L. J.; McLeod, A.; von Hippel, M., Phys. Rev. Lett., 117 (2016) · doi:10.1103/physrevlett.117.241601
[15] Caron-Huot, S.; Dixon, L. J.; Dulat, F.; von Hippel, M.; McLeod, A. J.; Papathanasiou, G., J. High Energy Phys. (2019) · Zbl 1421.81136 · doi:10.1007/JHEP08(2019)016
[16] Drummond, J. M.; Papathanasiou, G.; Spradlin, M., J. High Energy Phys. (2015) · doi:10.1007/JHEP03(2015)072
[17] Dixon, L. J.; Drummond, J.; Harrington, T.; McLeod, A. J.; Papathanasiou, G.; Spradlin, M., J. High Energy Phys. (2017) · doi:10.1007/jhep02(2017)137
[18] Drummond, J.; Foster, J.; Gurdogan, O.; Papathanasiou, G., J. High Energy Phys. (2019) · Zbl 1414.81251 · doi:10.1007/JHEP03(2019)087
[19] Dixon, L. J.; Liu, Y. T., J. High Energy Phys. (2020) · Zbl 1456.81428 · doi:10.1007/JHEP10(2020)031
[20] Drummond, J.; Foster, J.; Gürdoğan, Ö., Phys. Rev. Lett., 120 (2018) · doi:10.1103/physrevlett.120.161601
[21] Caron-Huot, S.; Dixon, L. J.; Dulat, F.; Von Hippel, M.; McLeod, A. J.; Papathanasiou, G., J. High Energy Phys. (2019) · Zbl 1423.81174 · doi:10.1007/JHEP09(2019)061
[22] Abreu, S.; Ita, H.; Moriello, F.; Page, B.; Tschernow, W.; Zeng, M., J. High Energy Phys. (2020) · doi:10.1007/jhep11(2020)117
[23] Chicherin, D.; Henn, J. M.; Papathanasiou, G., Phys. Rev. Lett., 126 (2021) · doi:10.1103/physrevlett.126.091603
[24] Almelid, Ø.; Duhr, C.; Gardi, E.; McLeod, A.; White, C. D., J. High Energy Phys. (2017) · Zbl 1382.81196 · doi:10.1007/JHEP09(2017)073
[25] Dixon, L. J.; Duhr, C.; Pennington, J., J. High Energy Phys. (2012) · doi:10.1007/JHEP10(2012)074
[26] Chestnov, V.; Papathanasiou, G., J. High Energy Phys. (2021) · Zbl 1472.81253 · doi:10.1007/JHEP09(2021)007
[27] He, S.; Li, Z.; Tang, Y.; Yang, Q., J. High Energy Phys. (2021) · doi:10.1007/JHEP10(2021)084
[28] Brandhuber, A.; Travaglini, G.; Yang, G., J. High Energy Phys. (2012) · Zbl 1348.81400 · doi:10.1007/JHEP05(2012)082
[29] Dixon, L. J.; McLeod, A. J.; Wilhelm, M., J. High Energy Phys. (2021) · doi:10.1007/jhep04(2021)147
[30] Chicherin, D.; Henn, J.; Mitev, V., J. High Energy Phys. (2018) · doi:10.1007/jhep05(2018)164
[31] Caron-Huot, S.; Dixon, L. J.; von Hippel, M.; McLeod, A. J.; Papathanasiou, G., J. High Energy Phys. (2018) · doi:10.1007/jhep07(2018)170
[32] Henn, J.; Herrmann, E.; Parra-Martinez, J., J. High Energy Phys. (2018) · Zbl 1402.81157 · doi:10.1007/JHEP10(2018)059
[33] He, S.; Li, Z.; Yang, Q., J. High Energy Phys. (2021) · doi:10.1007/jhep12(2021)110
[34] He, S.; Li, Z.; Yang, Q. (2021)
[35] Heller, M.; von Manteuffel, A.; Schabinger, R. M., Phys. Rev. D, 102 (2020) · doi:10.1103/physrevd.102.016025
[36] Heller, M. (2021)
[37] Dixon, L. J.; Drummond, J. M.; Duhr, C.; von Hippel, M.; Pennington, J., Proc. Sci., LL2014, 077 (2014) · doi:10.22323/1.211.0077
[38] Caron-Huot, S.; Dixon, L. J.; Drummond, J. M.; Dulat, F.; Foster, J.; Gürdoğan, O.; von Hippel, M.; McLeod, A. J.; Papathanasiou, G., Proc. Sci., CORFU2019, 003 (2020) · doi:10.22323/1.376.0003
[39] Brink, L.; Schwarz, J. H.; Scherk, J., Nucl. Phys. B, 121, 77-92 (1977) · doi:10.1016/0550-3213(77)90328-5
[40] Gliozzi, F.; Scherk, J.; Olive, D., Nucl. Phys. B, 122, 253-290 (1977) · doi:10.1016/0550-3213(77)90206-1
[41] Brandhuber, A.; Plefka, J.; Travaglini, G. (2022)
[42] Travaglini, G. (2022)
[43] ’t Hooft, G., Nucl. Phys. B, 72, 461 (1974) · doi:10.1016/0550-3213(74)90154-0
[44] Dixon, L. J., J. Phys. A: Math. Theor., 44 (2011) · Zbl 1270.81207 · doi:10.1088/1751-8113/44/45/454001
[45] Srednicki, M., Quantum Field Theory (2007), Cambridge: Cambridge University Press, Cambridge · Zbl 1113.81002
[46] Nair, V. P., Phys. Lett. B, 214, 215-218 (1988) · doi:10.1016/0370-2693(88)91471-2
[47] Elvang, H.; Freedman, D. Z.; Kiermaier, M., J. High Energy Phys. (2010) · doi:10.1007/jhep10(2010)103
[48] Zee, A., Quantum Field Theory in a Nutshell (2010), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 1277.81001
[49] Gehrmann, T.; Henn, J. M.; Lo Presti, N. A.; Gehrmann, T.; Henn, J. M.; Lo Presti, N. A., Phys. Rev. Lett.. Phys. Rev. Lett., 116 (2016) · Zbl 1356.81169 · doi:10.1103/physrevlett.116.189903
[50] Grisaru, M. T.; Pendleton, H. N., Nucl. Phys. B, 124, 81-92 (1977) · doi:10.1016/0550-3213(77)90277-2
[51] Drummond, J. M., Lett. Math. Phys., 99, 481-505 (2012) · Zbl 1244.81041 · doi:10.1007/s11005-011-0519-4
[52] Drummond, J. M.; Henn, J.; Smirnov, V. A.; Sokatchev, E., J. High Energy Phys. (2007) · doi:10.1088/1126-6708/2007/01/064
[53] Drummond, J. M.; Korchemsky, G. P.; Sokatchev, E., Nucl. Phys. B, 795, 385-408 (2008) · Zbl 1219.81227 · doi:10.1016/j.nuclphysb.2007.11.041
[54] Drummond, J. M.; Henn, J.; Korchemsky, G. P.; Sokatchev, E., Nucl. Phys. B, 826, 337-364 (2010) · Zbl 1203.81175 · doi:10.1016/j.nuclphysb.2009.10.013
[55] Drummond, J.; Henn, J.; Plefka, J., J. High Energy Phys. (2009) · doi:10.1088/1126-6708/2009/05/046
[56] Eden, B.; Heslop, P.; Korchemsky, G. P.; Sokatchev, E., Nucl. Phys. B, 862, 450-503 (2012) · Zbl 1246.81363 · doi:10.1016/j.nuclphysb.2012.04.013
[57] Hodges, A., J. High Energy Phys. (2013) · doi:10.1007/jhep05(2013)135
[58] Arkani-Hamed, N.; Bourjaily, J.; Cachazo, F.; Trnka, J., J. High Energy Phys. (2012) · doi:10.1007/jhep06(2012)125
[59] Bullimore, M. R., Scattering amplitudes and Wilson loops in twistor space, PhD Thesis (2013), New York
[60] Speyer, D.; Williams, L., J. Algebr. Comb., 22, 189-210 (2005) · Zbl 1094.14048 · doi:10.1007/s10801-005-2513-3
[61] Drummond, J.; Foster, J.; Gürdogan, O.; Kalousios, C., J. High Energy Phys. (2021) · Zbl 1462.81204 · doi:10.1007/JHEP04(2021)002
[62] Henke, N.; Papathanasiou, G., J. High Energy Phys., 10, 007 (2021) · Zbl 1476.81118 · doi:10.1007/JHEP10(2021)007
[63] Golden, J.; Goncharov, A. B.; Spradlin, M.; Vergu, C.; Volovich, A., J. High Energy Phys. (2014) · doi:10.1007/JHEP01(2014)091
[64] Arkani-Hamed, N.; Bourjaily, J. L.; Cachazo, F.; Goncharov, A. B.; Postnikov, A.; Trnka, J., Grassmannian Geometry of Scattering Amplitudes (2016), Cambridge: Cambridge University Press, Cambridge · Zbl 1365.81004
[65] Sterman, G.; Tejeda-Yeomans, M. E., Phys. Lett. B, 552, 48-56 (2003) · Zbl 1005.81519 · doi:10.1016/s0370-2693(02)03100-3
[66] Beisert, N.; Eden, B.; Staudacher, M., J. Stat. Mech. (2007) · doi:10.1088/1742-5468/2007/01/p01021
[67] Freyhult, L., Lett. Math. Phys., 99, 255-276 (2012) · Zbl 1244.81042 · doi:10.1007/s11005-011-0483-z
[68] Chicherin, D.; Korchemsky, G. P. (2022)
[69] Alday, L. F.; Roiban, R., Phys. Rep., 468, 153-211 (2008) · doi:10.1016/j.physrep.2008.08.002
[70] Yang, G., J. High Energy Phys. (2011) · Zbl 1301.81315 · doi:10.1007/JHEP03(2011)087
[71] Papadopoulos, C. G.; Tommasini, D.; Wever, C., J. High Energy Phys. (2016) · doi:10.1007/JHEP04(2016)078
[72] Canko, D. D.; Papadopoulos, C. G.; Syrrakos, N., J. High Energy Phys. (2021) · doi:10.1007/jhep01(2021)199
[73] Abreu, S.; Ita, H.; Page, B.; Tschernow, W. (2021)
[74] Arkani-Hamed, N.; Bourjaily, J. L.; Cachazo, F.; Goncharov, A. B.; Postnikov, A.; Trnka, J., Grassmannian Geometry of Scattering Amplitudes (2016), Cambridge: Cambridge University Press, Cambridge · Zbl 1365.81004
[75] Brown, F.; Duhr, C., A double integral of dlog forms which is not polylogarithmic (2020)
[76] Chen, K-T, Bull. Am. Math. Soc., 83, 831-879 (1977) · Zbl 0389.58001 · doi:10.1090/s0002-9904-1977-14320-6
[77] Goncharov, A. B., Adv. Math., 114, 197-318 (1995) · Zbl 0863.19004 · doi:10.1006/aima.1995.1045
[78] Goncharov, A. B., Math. Res. Lett., 5, 497-516 (1998) · Zbl 0961.11040 · doi:10.4310/mrl.1998.v5.n4.a7
[79] Abreu, S.; Britto, R.; Duhr, C. (2022)
[80] Blümlein, J.; Schneider, C. (2022)
[81] Weinzierl, S. (2022)
[82] Goncharov, A. B. (2001)
[83] Goncharov, A. B., Duke Math. J., 128, 209-284 (2005) · Zbl 1095.11036 · doi:10.1215/s0012-7094-04-12822-2
[84] Brown, F., Adv. Stud. Pure Math., 63, 31-58 (2012) · doi:10.48550/arXiv.1102.1310
[85] Duhr, C., J. High Energy Phys. (2012) · Zbl 1397.16028 · doi:10.1007/JHEP08(2012)043
[86] Goncharov, A. B. (2009)
[87] Goncharov, A. B.; Spradlin, M.; Vergu, C.; Volovich, A., Phys. Rev. Lett., 105 (2010) · doi:10.1103/physrevlett.105.151605
[88] Remiddi, E.; Vermaseren, J. A M., Int. J. Mod. Phys. A, 15, 725-754 (2000) · Zbl 0951.33003 · doi:10.1142/s0217751x00000367
[89] Bauer, C.; Frink, A.; Kreckel, R., J. Symb. Comput., 33, 1-12 (2002) · Zbl 1017.68163 · doi:10.1006/jsco.2001.0494
[90] Maitre, D., Comput. Phys. Commun., 183, 846 (2012) · doi:10.1016/j.cpc.2011.11.015
[91] Duhr, C.; Dulat, F., J. High Energy Phys. (2019) · doi:10.1007/jhep08(2019)135
[92] Frellesvig, H. (2018)
[93] Del Duca, V.; Duhr, C.; Smirnov, V. A., J. High Energy Phys. (2010) · Zbl 1271.81104 · doi:10.1007/JHEP03(2010)099
[94] Del Duca, V.; Duhr, C.; Smirnov, V. A., J. High Energy Phys. (2010) · Zbl 1287.81080 · doi:10.1007/JHEP05(2010)084
[95] Del Duca, V.; Duhr, C.; Smirnov, V. A., Phys. Lett. B, 703, 363-365 (2011) · doi:10.1016/j.physletb.2011.07.079
[96] Dixon, L. J.; Drummond, J. M.; Henn, J. M., J. High Energy Phys. (2011) · doi:10.1007/jhep06(2011)100
[97] Scott, J. S. (2003)
[98] Fomin, S.; Zelevinsky, A., J. Am. Math. Soc., 15, 497-529 (2002) · Zbl 1021.16017 · doi:10.1090/S0894-0347-01-00385-X
[99] Fomin, S.; Zelevinsky, A., Invent. Math., 154, 63-121 (2003) · Zbl 1054.17024 · doi:10.1007/s00222-003-0302-y
[100] Berenstein, A.; Fomin, S.; Zelevinsky, A., Duke Math. J., 126, 1-52 (2003) · Zbl 1135.16013 · doi:10.1215/S0012-7094-04-12611-9
[101] Fomin, S.; Zelevinsky, A., Compos. Math., 143, 112-164 (2007) · Zbl 1127.16023 · doi:10.1112/s0010437x06002521
[102] Fomin, S.; Zelevinsky, A. (2001)
[103] Gaiotto, D.; Moore, G. W.; Neitzke, A., Adv. Theor. Math. Phys., 17, 241-397 (2013) · Zbl 1290.81146 · doi:10.4310/atmp.2013.v17.n2.a1
[104] Alim, M.; Cecotti, S.; Córdova, C.; Espahbodi, S.; Rastogi, A.; Vafa, C., Commun. Math. Phys., 323, 1185-1227 (2013) · Zbl 1305.81118 · doi:10.1007/s00220-013-1789-8
[105] Alim, M.; Cecotti, S.; Córdova, C.; Espahbodi, S.; Rastogi, A.; Vafa, C., Adv. Theor. Math. Phys., 18, 27-127 (2014) · Zbl 1309.81142 · doi:10.4310/atmp.2014.v18.n1.a2
[106] Arkani-Hamed, N.; Bai, Y.; He, S.; Yan, G., J. High Energy Phys. (2018) · Zbl 1391.81200 · doi:10.1007/JHEP05(2018)096
[107] Arkani-Hamed, N.; He, S.; Salvatori, G.; Thomas, H. (2019)
[108] Vergu, C., Polylogarithm identities, cluster algebras and the N = 4 supersymmetric theory (2015)
[109] Drummond, J.; Foster, J.; Gürdoğan, Ö. (2018)
[110] Feng, B.; Hanany, A.; He, Y-H; Uranga, A. M., J. High Energy Phys. (2001) · doi:10.1088/1126-6708/2001/12/035
[111] Keller, B. (2012)
[112] Felikson, A.; Shapiro, M.; Tumarkin, P. (2011)
[113] Fock, V. V.; Goncharov, A. B. (2003)
[114] Herrmann, E.; Trnka, J. (2022)
[115] Caron-Huot, S., J. High Energy Phys. (2011) · Zbl 1306.81082 · doi:10.1007/JHEP12(2011)066
[116] Golden, J.; Spradlin, M., J. High Energy Phys. (2013) · doi:10.1007/jhep09(2013)111
[117] Golden, J.; Paulos, M. F.; Spradlin, M.; Volovich, A., J. Phys. A: Math. Theor., 47 (2014) · Zbl 1304.81123 · doi:10.1088/1751-8113/47/47/474005
[118] Parker, D. E.; Scherlis, A.; Spradlin, M.; Volovich, A., J. High Energy Phys., 2015, 136 (2015)
[119] Golden, J.; Mcleod, A. J., J. High Energy Phys. (2019) · Zbl 1409.81149 · doi:10.1007/JHEP01(2019)017
[120] Gekhtman, M.; Shapiro, M.; Vainshtein, A. (2002)
[121] Golden, J.; Spradlin, M., J. High Energy Phys. (2014) · doi:10.1007/jhep08(2014)154
[122] Golden, J.; Spradlin, M., J. High Energy Phys. (2015) · doi:10.1007/JHEP02(2015)002
[123] Golden, J.; McLeod, A. J., J. High Energy Phys. (2021) · doi:10.1007/jhep06(2021)142
[124] Harrington, T.; Spradlin, M., J. High Energy Phys. (2017) · Zbl 1380.81402 · doi:10.1007/JHEP07(2017)016
[125] Arkani-Hamed, N.; He, S.; Lam, T., J. High Energy Phys. (2021) · Zbl 1460.83083 · doi:10.1007/JHEP02(2021)069
[126] Arkani-Hamed, N.; He, S.; Lam, T.; Thomas, H. (2019)
[127] Gates, S. J.; Hazel Mak, S. N.; Spradlin, M.; Volovich, A. (2021)
[128] Steinmann, O., Helv. Phys. Acta, 33, 257 (1960) · Zbl 0131.44201 · doi:10.3929/ethz-a-000107369
[129] Steinmann, O., Helv. Phys. Acta, 33, 347 (1960) · Zbl 0131.44202
[130] Cahill, K. E.; Stapp, H. P., Ann. Phys., 90, 438 (1975) · doi:10.1016/0003-4916(75)90006-8
[131] Cutkosky, R. E., J. Math. Phys., 1, 429-433 (1960) · Zbl 0122.22605 · doi:10.1063/1.1703676
[132] Papathanasiou, G. (2017)
[133] Mago, J.; Schreiber, A.; Spradlin, M.; Volovich, A., J. High Energy Phys. (2019) · Zbl 1427.81172 · doi:10.1007/JHEP10(2019)099
[134] Lippstreu, L.; Mago, J.; Spradlin, M.; Volovich, A., J. High Energy Phys. (2019) · Zbl 1423.81180 · doi:10.1007/JHEP09(2019)093
[135] Lukowski, T.; Parisi, M.; Spradlin, M.; Volovich, A., J. High Energy Phys. (2019) · Zbl 1427.81171 · doi:10.1007/JHEP10(2019)158
[136] Mago, J.; Schreiber, A.; Spradlin, M.; Volovich, A., J. High Energy Phys. (2021) · Zbl 1459.81112 · doi:10.1007/JHEP01(2021)084
[137] Abreu, S.; Dormans, J.; Febres Cordero, F.; Ita, H.; Page, B., Phys. Rev. Lett., 122 (2019) · doi:10.1103/physrevlett.122.082002
[138] Golden, J.; McLeod, A. J.; Spradlin, M.; Volovich, A., J. High Energy Phys. (2019) · doi:10.1007/jhep03(2019)195
[139] He, S.; Li, Z.; Yang, Q., J. High Energy Phys. (2022) · Zbl 1521.81134 · doi:10.1007/JHEP01(2022)073
[140] Gaiotto, D.; Maldacena, J.; Sever, A.; Vieira, P., J. High Energy Phys. (2011) · Zbl 1306.81153 · doi:10.1007/JHEP12(2011)011
[141] Caron-Huot, S.; He, S., J. High Energy Phys. (2012) · doi:10.1007/jhep07(2012)174
[142] He, S.; Li, Z.; Zhang, C., J. High Energy Phys. (2021) · doi:10.1007/jhep03(2021)278
[143] He, S.; Li, Z.; Zhang, C., Phys. Rev. D, 101 (2020) · doi:10.1103/physrevd.101.061701
[144] Li, Z.; Zhang, C., J. High Energy Phys. (2021) · doi:10.1007/jhep12(2021)113
[145] Chen, Z.; Storjohann, A., A BLAS based C library for exact linear algebra on integer matrices, 92-99 (2005), New York: ACM, New York · Zbl 1360.65086
[146] Stein, W.; Joyner, D., SIGSAM Bull., 39, 61-64 (2005) · Zbl 1341.68315 · doi:10.1145/1101884.1101889
[147] The SpaSM Group, SpaSM: a sparse direct solver modulo p (2017)
[148] Mitev, V.; Zhang, Y. (2018)
[149] Peraro, T., J. High Energy Phys. (2019) · doi:10.1007/JHEP07(2019)031
[150] Alday, L. F.; Gaiotto, D.; Maldacena, J.; Sever, A.; Vieira, P., J. High Energy Phys. (2011) · Zbl 1250.81071 · doi:10.1007/JHEP04(2011)088
[151] Basso, B.; Sever, A.; Vieira, P., Phys. Rev. Lett., 111 (2013) · doi:10.1103/physrevlett.111.091602
[152] Basso, B.; Sever, A.; Vieira, P., J. High Energy Phys. (2014) · doi:10.1007/JHEP01(2014)008
[153] Basso, B.; Sever, A.; Vieira, P., J. High Energy Phys. (2014) · doi:10.1007/JHEP08(2014)085
[154] Basso, B.; Sever, A.; Vieira, P., J. High Energy Phys. (2014) · doi:10.1007/jhep09(2014)149
[155] Belitsky, A. V., Nucl. Phys. B, 896, 493-554 (2015) · Zbl 1331.81283 · doi:10.1016/j.nuclphysb.2015.05.002
[156] Belitsky, A. V., Nucl. Phys. B, 894, 108-135 (2015) · Zbl 1328.81156 · doi:10.1016/j.nuclphysb.2015.02.025
[157] Basso, B.; Caetano, J.; Cordova, L.; Sever, A.; Vieira, P., J. High Energy Phys. (2015) · Zbl 1388.81277 · doi:10.1007/JHEP08(2015)018
[158] Basso, B.; Caetano, J.; Cordova, L.; Sever, A.; Vieira, P., J. High Energy Phys. (2015) · Zbl 1388.81278 · doi:10.1007/JHEP12(2015)088
[159] Basso, B.; Sever, A.; Vieira, P., J. Phys. A: Math. Theor., 49 (2016) · Zbl 1349.81170 · doi:10.1088/1751-8113/49/41/41lt01
[160] Belitsky, A. V., Nucl. Phys. B, 923, 588-607 (2017) · Zbl 1373.81281 · doi:10.1016/j.nuclphysb.2017.08.011
[161] Papathanasiou, G., J. High Energy Phys. (2013) · doi:10.1007/jhep11(2013)150
[162] Papathanasiou, G., Int. J. Mod. Phys. A, 29, 1450154 (2014) · Zbl 1303.81193 · doi:10.1142/s0217751x14501541
[163] Drummond, J. M.; Papathanasiou, G., J. High Energy Phys. (2016) · doi:10.1007/jhep02(2016)185
[164] Cordova, L., J. High Energy Phys. (2017) · Zbl 1373.81349 · doi:10.1007/JHEP01(2017)051
[165] Lam, H. T.; von Hippel, M., J. High Energy Phys. (2016) · doi:10.1007/JHEP12(2016)011
[166] Belitsky, A. V., Nucl. Phys. B, 929, 113-136 (2018) · Zbl 1382.81136 · doi:10.1016/j.nuclphysb.2018.01.031
[167] Belitsky, A. V., Phys. Lett. B, 780, 66-73 (2018) · Zbl 1390.81564 · doi:10.1016/j.physletb.2018.02.063
[168] Bork, L.; Onishchenko, A. (2019)
[169] Basso, B.; Dixon, L. J.; Papathanasiou, G., Phys. Rev. Lett., 124 (2020) · doi:10.1103/physrevlett.124.161603
[170] Del Duca, V.; Dixon, L. J. (2022)
[171] Bartels, J.; Lipatov, L. N.; Sabio Vera, A., Eur. Phys. J. C, 65, 587-605 (2010) · doi:10.1140/epjc/s10052-009-1218-5
[172] Fadin, V. S.; Lipatov, L. N., Phys. Lett. B, 706, 470-476 (2012) · doi:10.1016/j.physletb.2011.11.048
[173] Bartels, J.; Kormilitzin, A.; Lipatov, L. N.; Prygarin, A., Phys. Rev. D, 86 (2012) · doi:10.1103/physrevd.86.065026
[174] Lipatov, L.; Prygarin, A.; Schnitzer, H. J., J. High Energy Phys. (2013) · doi:10.1007/JHEP01(2013)068
[175] Bartels, J.; Kormilitzin, A.; Lipatov, L., Phys. Rev. D, 89 (2014) · doi:10.1103/physrevd.89.065002
[176] Del Duca, V.; Druc, S.; Drummond, J.; Duhr, C.; Dulat, F.; Marzucca, R.; Papathanasiou, G.; Verbeek, B., J. High Energy Phys. (2016) · doi:10.1007/jhep08(2016)152
[177] Del Duca, V.; Druc, S.; Drummond, J.; Duhr, C.; Dulat, F.; Marzucca, R.; Papathanasiou, G.; Verbeek, B., J. High Energy Phys. (2018) · doi:10.1007/jhep06(2018)116
[178] Basso, B.; Caron-Huot, S.; Sever, A., J. High Energy Phys. (2015) · doi:10.1007/JHEP01(2015)027
[179] Del Duca, V.; Druc, S.; Drummond, J. M.; Duhr, C.; Dulat, F.; Marzucca, R.; Papathanasiou, G.; Verbeek, B., Phys. Rev. Lett., 124 (2020) · doi:10.1103/physrevlett.124.161602
[180] Dixon, L. J.; Liu, Y-T; Miczajka, J., J. High Energy Phys. (2021) · doi:10.1007/jhep12(2021)218
[182] Brown, F. C S., Ann. Sci. École Norm. Sup., 42, 371 (2009) · Zbl 1216.11079 · doi:10.24033/asens.2099
[183] Bogner, C.; Brown, F., Commun. Numer. Theor. Phys., 9, 189-238 (2015) · Zbl 1316.81040 · doi:10.4310/cntp.2015.v9.n1.a3
[184] Ablinger, J.; Blümlein, J.; Raab, C.; Schneider, C.; Wißbrock, F., Nucl. Phys. B, 885, 409-447 (2014) · Zbl 1323.81097 · doi:10.1016/j.nuclphysb.2014.04.007
[185] Anastasiou, C.; Duhr, C.; Dulat, F.; Mistlberger, B., J. High Energy Phys. (2013) · doi:10.1007/JHEP07(2013)003
[186] Panzer, E., Comput. Phys. Commun., 188, 148-166 (2015) · Zbl 1344.81024 · doi:10.1016/j.cpc.2014.10.019
[187] Bogner, C., Comput. Phys. Commun., 203, 339-353 (2016) · Zbl 1375.81164 · doi:10.1016/j.cpc.2016.02.033
[188] Bourjaily, J. L.; Caron-Huot, S.; Trnka, J., J. High Energy Phys. (2015) · doi:10.1007/JHEP01(2015)001
[189] Arkani-Hamed, N.; Lam, T.; Spradlin, M., J. High Energy Phys. (2021) · Zbl 1461.81136 · doi:10.1007/JHEP03(2021)065
[190] Henke, N.; Papathanasiou, G., J. High Energy Phys. (2020) · doi:10.1007/JHEP08(2020)005
[191] Speyer, D.; Sturmfels, B. (2003)
[192] Herderschee, A., J. High Energy Phys. (2021) · Zbl 1468.81111 · doi:10.1007/JHEP07(2021)049
[193] Mago, J.; Schreiber, A.; Spradlin, M.; Volovich, A., J. High Energy Phys. (2020) · doi:10.1007/jhep10(2020)128
[194] He, S.; Li, Z., J. High Energy Phys. (2021) · doi:10.1007/jhep02(2021)155
[195] Mago, J.; Schreiber, A.; Spradlin, M.; Yelleshpur Srikant, A.; Volovich, A., J. High Energy Phys. (2021) · doi:10.1007/JHEP09(2021)002
[196] Mago, J.; Schreiber, A.; Spradlin, M.; Srikant, A. Y.; Volovich, A., J. High Energy Phys. (2021) · doi:10.1007/JHEP04(2021)056
[197] Drummond, J.; Foster, J.; Gürdoğan, O.; Kalousios, C., J. High Energy Phys. (2021) · Zbl 1521.81413 · doi:10.1007/JHEP11(2021)071
[198] Nakanishi, T.; Zelevinsky, A. (2011)
[199] Cachazo, F.; Early, N.; Guevara, A.; Mizera, S., J. High Energy Phys. (2019) · Zbl 1445.81064 · doi:10.1007/JHEP06(2019)039
[200] Cachazo, F.; He, S.; Yuan, E. Y., Phys. Rev. Lett., 113 (2014) · doi:10.1103/physrevlett.113.171601
[201] Cachazo, F.; He, S.; Yuan, E. Y., J. High Energy Phys. (2014) · Zbl 1391.81198 · doi:10.1007/JHEP07(2014)033
[202] Drummond, J.; Foster, J.; Gürdoğan, Ö.; Kalousios, C., J. High Energy Phys. (2020) · doi:10.1007/jhep04(2020)146
[203] Gawrilow, E.; Joswig, M., polymake: a framework for analyzing convex polytopes, Polytopes—Combinatorics and Computation (Oberwolfach, 1997), 43-73 (2000), Basel: Birkhäuser, Basel · Zbl 0960.68182
[204] Canakci, I.; Schiffler, R., Compos. Math., 154, 565-593 (2018) · Zbl 1437.13033 · doi:10.1112/S0010437X17007631
[205] Reading, N. (2018)
[206] Ren, L.; Spradlin, M.; Volovich, A., J. High Energy Phys. (2021) · Zbl 1521.81401 · doi:10.1007/JHEP12(2021)079
[207] Caron-Huot, S.; Larsen, K. J., J. High Energy Phys. (2012) · doi:10.1007/JHEP10(2012)026
[208] Broedel, J.; Duhr, C.; Dulat, F.; Penante, B.; Tancredi, L., J. High Energy Phys. (2018) · doi:10.1007/JHEP08(2018)014
[209] Kristensson, A.; Wilhelm, M.; Zhang, C., Phys. Rev. Lett., 127 (2021) · doi:10.1103/physrevlett.127.251603
[210] Brown, F., Commun. Numer. Theor. Phys., 11, 453-556 (2017) · Zbl 1395.81117 · doi:10.4310/cntp.2017.v11.n3.a1
[211] Brown, F. (2015)
[212] Bourjaily, J. L., Functions beyond multiple polylogarithms for precision collider physics (2022)
[213] Bourjaily, J. L.; McLeod, A. J.; von Hippel, M.; Wilhelm, M., J. High Energy Phys. (2018) · doi:10.1007/jhep08(2018)184
[214] Cachazo, F. (2008)
[215] McLeod, A. J.; Munch, H. J.; Papathanasiou, G.; von Hippel, M., J. High Energy Phys. (2020) · doi:10.1007/jhep11(2020)122
[216] Drummond, J. M.; Henn, J. M.; Trnka, J., J. High Energy Phys. (2011) · Zbl 1250.81064 · doi:10.1007/JHEP04(2011)083
[217] He, S.; Li, Z.; Tang, Y.; Yang, Q., J. High Energy Phys. (2021) · Zbl 1466.81024 · doi:10.1007/JHEP05(2021)052
[218] Basso, B.; Dixon, L. J., Phys. Rev. Lett., 119 (2017) · doi:10.1103/physrevlett.119.071601
[219] Arkani-Hamed, N.; Bourjaily, J. L.; Cachazo, F.; Trnka, J., Phys. Rev. Lett., 113 (2014) · doi:10.1103/physrevlett.113.261603
[220] Henn, J.; Mistlberger, B.; Smirnov, V. A.; Wasser, P., J. High Energy Phys. (2020) · doi:10.1007/jhep04(2020)167
[221] Henn, J. M., Phys. Rev. Lett., 110 (2013) · doi:10.1103/physrevlett.110.251601
[222] Prausa, M., Comput. Phys. Commun., 219, 361-376 (2017) · Zbl 1411.81019 · doi:10.1016/j.cpc.2017.05.026
[223] Gituliar, O.; Magerya, V., Comput. Phys. Commun., 219, 329-338 (2017) · Zbl 1411.81015 · doi:10.1016/j.cpc.2017.05.004
[224] Meyer, C., Comput. Phys. Commun., 222, 295-312 (2018) · Zbl 07693052 · doi:10.1016/j.cpc.2017.09.014
[225] Dlapa, C.; Henn, J.; Yan, K., J. High Energy Phys. (2020) · doi:10.1007/JHEP05(2020)025
[226] Lee, R. N., Comput. Phys. Commun., 267 (2021) · Zbl 1519.35006 · doi:10.1016/j.cpc.2021.108058
[227] Besier, M.; Van Straten, D.; Weinzierl, S., Commun. Numer. Theor. Phys., 13, 253-297 (2019) · Zbl 1414.81116 · doi:10.4310/cntp.2019.v13.n2.a1
[228] Besier, M.; Wasser, P.; Weinzierl, S., Comput. Phys. Commun., 253 (2020) · Zbl 1535.65031 · doi:10.1016/j.cpc.2020.107197
[229] Duhr, C.; Gangl, H.; Rhodes, J. R., J. High Energy Phys. (2012) · Zbl 1397.81355 · doi:10.1007/JHEP10(2012)075
[230] Gehrmann, T.; Remiddi, E., Nucl. Phys. B, 601, 248-286 (2001) · doi:10.1016/s0550-3213(01)00057-8
[231] Gehrmann, T.; Remiddi, E., Nucl. Phys. B, 601, 287-317 (2001) · doi:10.1016/s0550-3213(01)00074-8
[232] Di Vita, S.; Mastrolia, P.; Schubert, U.; Yundin, V., J. High Energy Phys. (2014) · doi:10.1007/jhep09(2014)148
[233] Panzer, E., Feynman integrals and hyperlogarithms, PhD Thesis (2015)
[234] Canko, D. D.; Gasparotto, F.; Mattiazzi, L.; Papadopoulos, C. G.; Syrrakos, N., N^3LO calculations for 2 → 2 processes using simplified differential equations (2021)
[235] Canko, D. D.; Syrrakos, N. (2021)
[236] Garland, L. W.; Gehrmann, T.; Glover, E. W N.; Koukoutsakis, A.; Remiddi, E., Nucl. Phys. B, 642, 227-262 (2002) · doi:10.1016/s0550-3213(02)00627-2
[237] Gehrmann, T.; Tancredi, L.; Weihs, E., J. High Energy Phys. (2013) · doi:10.1007/jhep04(2013)101
[238] Gehrmann, T.; Jaquier, M.; Glover, E. W N.; Koukoutsakis, A., J. High Energy Phys. (2012) · Zbl 1309.81327 · doi:10.1007/JHEP02(2012)056
[239] Heslop, P. (2022)
[240] He, S.; Li, Z.; Yang, Q., J. High Energy Phys. (2021) · doi:10.1007/jhep06(2021)119
[241] Sever, A.; Tumanov, A. G.; Wilhelm, M., Phys. Rev. Lett., 126 (2021) · doi:10.1103/physrevlett.126.031602
[242] Sever, A.; Tumanov, A. G.; Wilhelm, M., J. High Energy Phys. (2021) · Zbl 1476.81061 · doi:10.1007/JHEP10(2021)071
[243] Sever, A.; Tumanov, A. G.; Wilhelm, M. (2021)
[244] Dixon, L. J.; Gurdogan, O.; McLeod, A. J.; Wilhelm, M. (2022)
[245] Dixon, L. J.; Gurdogan, O.; McLeod, A. J.; Wilhelm, M. (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.