×

Some uniform bounds for elliptic curves over \(\mathbb{Q} \). (English) Zbl 1526.11026

The authors give explicit uniform bounds for several quantities relevant to the study of Galois representations attached to elliptic curves \(E\) over \(\mathbb Q\). Such types of bounds were studied before by the present authors and many others (including Greenberg, Lawson and Wuthrich, Mazur, Serre, Zywina).
For any prime \(l\), let \(G_{l^{\infty}}\) denote the image of the \(l\)-adic Galois representation attached to \(E\), and by \(G_{\infty}\) the image of the adelic representation. They prove:
(i)
a uniform upper bound for the index \([\mathbb Z_{l^{\times}} : \mathbb Z_{l^{\times}} \cap G_{l^{\infty}}]\) (Theorem 3.16);
(ii)
a uniform upper bound on the exponent of the cohomology group \(H^1(G_{\infty},T)\), for any Galois submodule \(T\) of \(E_{tors}\) (Theorem 4.9);
(iii)
a uniform lower bound for the closed \(\mathbb Z_l\)-subalgebra \(\mathbb Z_l[G_{l^{\infty}}]\) of \(\text{Mat}_{2\times 2}(\mathbb Z_l)\) generated by \(G_{l^{\infty}}\) (Theorem 5.8);
(iv)
a uniform lower bound on the degrees of the relative “Kummer extensions” (Theorem 6.5). This part was their original motivation for the present work; a similar result had already shown in their paper [D. Lombardo and S. Tronto, Int. Math. Res. Not. 2022, No. 22, 17662–17712 (2022; Zbl 1514.11036)].
In the last section, the authors give examples showing that most of their results are sharp or close to being sharp. They also point out that most of their results can be extended to number fields having at least one real place, at least if one is ready to believe the generalised Riemann hypothesis.

MSC:

11F80 Galois representations
11G05 Elliptic curves over global fields
14K15 Arithmetic ground fields for abelian varieties

Citations:

Zbl 1514.11036

Software:

ecdata

References:

[1] 10.5802/jtnb.614 · Zbl 1211.11066 · doi:10.5802/jtnb.614
[2] ; Baker, Matthew H.; Ribet, Kenneth A., Galois theory and torsion points on curves, J. Théor. Nombres Bordeaux, 15, 1, 11 (2003) · Zbl 1065.11045
[3] 10.4007/annals.2019.189.3.6 · Zbl 1469.14050 · doi:10.4007/annals.2019.189.3.6
[4] 10.2140/ant.2014.8.1201 · Zbl 1303.11066 · doi:10.2140/ant.2014.8.1201
[5] ; Bertrand, D., Galois representations and transcendental numbers, New advances in transcendence theory, 37 (1988) · Zbl 0679.10024
[6] 10.4007/annals.2011.173.1.13 · Zbl 1278.11065 · doi:10.4007/annals.2011.173.1.13
[7] ; Boston, Nigel; Lenstra, Hendrik W.; Ribet, Kenneth A., Quotients of group rings arising from two-dimensional representations, C. R. Acad. Sci. Paris Sér. I Math., 312, 4, 323 (1991) · Zbl 0718.16018
[8] 10.2140/pjm.2020.305.43 · Zbl 1480.11070 · doi:10.2140/pjm.2020.305.43
[9] 10.1112/jlms.12329 · Zbl 1466.11031 · doi:10.1112/jlms.12329
[10] 10.1017/S0017089520000336 · Zbl 1475.11119 · doi:10.1017/S0017089520000336
[11] 10.1090/proc/15254 · Zbl 1464.11055 · doi:10.1090/proc/15254
[12] 10.1007/BF01404611 · Zbl 0216.04403 · doi:10.1007/BF01404611
[13] ; Cohen, Henri, Number theory, I : Tools and Diophantine equations. Graduate Texts in Mathematics, 239 (2007) · Zbl 1119.11001
[14] ; Cremona, J. E., Algorithms for modular elliptic curves (1997) · Zbl 0872.14041
[15] 10.1016/j.jnt.2011.01.011 · Zbl 1246.11116 · doi:10.1016/j.jnt.2011.01.011
[16] 10.1090/stml/059 · doi:10.1090/stml/059
[17] 10.1007/978-3-642-59058-0 · doi:10.1007/978-3-642-59058-0
[18] 10.1353/ajm.2012.0040 · Zbl 1308.11060 · doi:10.1353/ajm.2012.0040
[19] 10.1353/ajm.2014.0005 · Zbl 1296.11063 · doi:10.1353/ajm.2014.0005
[20] 10.1017/CBO9780511526053.009 · Zbl 0743.14021 · doi:10.1017/CBO9780511526053.009
[21] 10.1007/978-3-030-43901-9 · Zbl 1466.11086 · doi:10.1007/978-3-030-43901-9
[22] 10.1007/BF01394276 · Zbl 0638.14026 · doi:10.1007/BF01394276
[23] 10.1090/S0002-9947-09-04804-1 · Zbl 1204.11088 · doi:10.1090/S0002-9947-09-04804-1
[24] 10.1112/plms/pdp051 · Zbl 1244.11057 · doi:10.1112/plms/pdp051
[25] 10.1016/0022-314X(82)90025-7 · Zbl 0493.14017 · doi:10.1016/0022-314X(82)90025-7
[26] 10.1017/S1474748013000182 · Zbl 1300.11064 · doi:10.1017/S1474748013000182
[27] ; Lawson, Tyler; Wuthrich, Christian, Vanishing of some Galois cohomology groups for elliptic curves, Elliptic curves, modular forms and Iwasawa theory. Springer Proc. Math. Stat., 188, 373 (2016) · Zbl 1410.11052
[28] 10.2140/ant.2021.15.747 · Zbl 1479.11097 · doi:10.2140/ant.2021.15.747
[29] 10.2140/ant.2015.9.2347 · Zbl 1341.11030 · doi:10.2140/ant.2015.9.2347
[30] 10.24033/bsmf.2745 · Zbl 1390.14137 · doi:10.24033/bsmf.2745
[31] ; Lombardo, Davide; Perucca, Antonella, The 1-eigenspace for matrices in GL2(ℤℓ), New York J. Math., 23, 897 (2017) · Zbl 1369.28012
[32] 10.1093/imrn/rnab216 · Zbl 1514.11036 · doi:10.1093/imrn/rnab216
[33] 10.2140/ant.2022.16.777 · Zbl 1504.14064 · doi:10.2140/ant.2022.16.777
[34] ; Mazur, B., Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math., 47, 33 (1977) · Zbl 0394.14008
[35] 10.1007/BF01390348 · Zbl 0386.14009 · doi:10.1007/BF01390348
[36] 10.1090/mcom/3426 · Zbl 1470.11154 · doi:10.1090/mcom/3426
[37] ; Ogg, A. P., Rational points on certain elliptic modular curves, Analytic number theory. Proc. Sympos. Pure Math., XXIV, 221 (1973) · Zbl 0273.14008
[38] ; Pink, Richard, Classification of pro-p subgroups of SL2 over a p-adic ring, where p is an odd prime, Compositio Math., 88, 3, 251 (1993) · Zbl 0820.20055
[39] ; Ribet, Kenneth A., Kummer theory on extensions of abelian varieties by tori, Duke Math. J., 46, 4, 745 (1979) · Zbl 0428.14018
[40] 10.1007/978-1-4612-4314-4 · doi:10.1007/978-1-4612-4314-4
[41] 10.1007/s40993-015-0013-7 · Zbl 1397.11095 · doi:10.1007/s40993-015-0013-7
[42] 10.1017/fms.2022.38 · Zbl 1499.14057 · doi:10.1017/fms.2022.38
[43] 10.1007/BF01405086 · Zbl 0235.14012 · doi:10.1007/BF01405086
[44] ; Serre, Jean-Pierre, Abelian l-adic representations and elliptic curves. Research Notes in Mathematics, 7 (1998) · Zbl 0902.14016
[45] 10.1007/978-1-4612-0851-8 · doi:10.1007/978-1-4612-0851-8
[46] 10.1007/978-0-387-09494-6 · Zbl 1194.11005 · doi:10.1007/978-0-387-09494-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.