×

Construction of the unitary free fermion Segal CFT. (English) Zbl 1406.81085

G. Segal [Lond. Math. Soc. Lect. Note Ser. 308, 421–577 (2004; Zbl 1372.81138)] proposed an abstract definition of conformal field theory as a projective monoidal functor \(E\) defined on a bordism category of Riemann surfaces. The topological version of this notion has been greatly developed in recent years, but examples of CFTs in Segal’s sense remain scarce. The paper under review provides a rigorous construction of the free fermion theory as a (spin) Segal CFT. The domain bordism category is carefully set up and the construction of the functor \(E\) is given in detail, using as main tool the Cauchy transform for Riemann surfaces.
Finally, in order to justify the given construction, it is verified that by evaluating the CFT on suitable pairs of pants, one recovers the free fermion vertex operator algebra.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
53C27 Spin and Spin\({}^c\) geometry
17B69 Vertex operators; vertex operator algebras and related structures
19D23 Symmetric monoidal categories

Citations:

Zbl 1372.81138

References:

[1] Atiyah, M.F.: Riemann surfaces and spin structures. Ann. Sci. École Norm. Sup. (4) 4, 47-62 (1971) · Zbl 0212.56402
[2] Bell, S.R.: The Cauchy Transform, Potential Theory, and Conformal Mapping. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)
[3] Bishop E.: Subalgebras of functions on a Riemann surface. Pac. J. Math. 8, 29-50 (1958) · Zbl 0083.06201 · doi:10.2140/pjm.1958.8.29
[4] Boivin A.: T-invariant algebras on Riemann surfaces. Mathematika 34(2), 160-171 (1987) · Zbl 0619.30040 · doi:10.1112/S0025579300013413
[5] Carpi, S., Kawahigashi, Y., Longo, R., Weiner, M.: From vertex operator algebras to conformal nets and back. Mem. Am. Math. Soc., to appear (2015). arXiv:1503.01260 [math.OA] · Zbl 1434.17001
[6] de la Harpe, P., Jones, V.: An introduction to C*-algebras. Université de Genève (1995) · Zbl 0495.22017
[7] Forster, O.: Lectures on Riemann surfaces, volume 81 of Graduate Texts in Mathematics. Springer, New York-Berlin, Translated from the German by Bruce Gilligan (1981) · Zbl 0475.30002
[8] Gauthier, P.M.: Meromorphic uniform approximation on closed subsets of open Riemann surfaces. In: Approximation Theory and Functional Analysis (Proc. Internat. Sympos. Approximation Theory, Univ. Estadual de Campinas, Campinas, 1977), volume 35 of North-Holland Math. Stud., pp. 139-158. North-Holland, Amsterdam (1979) · Zbl 0944.46059
[9] Gunning R.C., Narasimhan R.: Immersion of open Riemann surfaces. Math. Ann. 174, 103-108 (1967) · Zbl 0179.11402 · doi:10.1007/BF01360812
[10] Huang, Y.-Z.: Riemann surfaces with boundaries and the theory of vertex operator algebras. In Vertex Operator Algebras in Mathematics and Physics (Toronto, ON, 2000), volume 39 of Fields Inst. Commun., pp. 109-125. Amer. Math. Soc., Providence (2003) · Zbl 1028.81050
[11] Kac, V.: Vertex algebras for beginners, volume 10 of University Lecture Series, 2nd edn. American Mathematical Society, Providence (1998) · Zbl 0924.17023
[12] Kriz I.: On spin and modularity in conformal field theory. Ann. Sci. École Norm. Sup. (4) 36(1), 57-112 (2003) · Zbl 1028.81050 · doi:10.1016/S0012-9593(03)00003-X
[13] Posthuma, H.B.: Quantization of Hamiltonian loop group actions. Ph.D. thesis, University of Amsterdam (2003)
[14] Pressley, A., Segal, G.: Loop Groups. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, Oxford Science Publications (1986) · Zbl 0618.22011
[15] Scheinberg S.: Uniform approximation by functions analytic on a Riemann surface. Ann. Math. (2) 108(2), 257-298 (1978) · Zbl 0423.30035 · doi:10.2307/1971167
[16] Segal G.: Unitary representations of some infinite-dimensional groups. Commun. Math. Phys. 80(3), 301-342 (1981) · Zbl 0495.22017 · doi:10.1007/BF01208274
[17] Segal, G.: The definition of conformal field theory. In Topology, Geometry and Quantum Field Theory, volume 308 of London Math. Soc. Lecture Note Ser., pp. 421-577. Cambridge Univ. Press, Cambridge (2004) · Zbl 1372.81138
[18] Sharon E., Mumford D.: 2d-shape analysis using conformal mapping. Int. J. Comput. Vis. 70(1), 55-75 (2006) · Zbl 1477.68492 · doi:10.1007/s11263-006-6121-z
[19] Tener, J.E.: Construction of the unitary free fermion Segal conformal field theory. ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.)—University of California, Berkeley (2014)
[20] Tener, J.E.: Geometric realization of algebraic conformal field theories (2016). arXiv:1611.01176 [math-ph] · Zbl 1418.81081
[21] Thaller, B.: The Dirac equation. Texts and Monographs in Physics. Springer, Berlin (1992)
[22] Wassermann A.: Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators. Invent. Math. 133(3), 467-538 (1998) · Zbl 0944.46059 · doi:10.1007/s002220050253
[23] Wassermann, A.: Kac-Moody and Virasoro algebras. Course notes, University of Cambridge (2011) · Zbl 0619.30040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.