×

T-invariant algebras on Riemann surfaces. (English) Zbl 0619.30040

Let K be a compact subset of the complex plane, C(K) be the set of all continuous functions on K and R(K) be the algebra of functions in C(K) which are uniform limits of rational functions without poles on K. For \(\phi\) smooth and \(f\in C(K)\), define \[ (T_{\phi}f)(w)=\phi (w)f(w)+(2\pi i)^{-1}\iint _{K}f(z)(z-w)^{-1}(\partial \phi /\partial \bar z)d\bar z\wedge dz. \] A closed subalgebra A of C(K) is said to be a (planar) T-invariant algebra if R(K)\(\subseteq A\) and \(T_{\phi}A\subseteq A\) for all smooth \(\phi\) with compact support. R(K) and A(K) \(\{=C(K)\cap Hol(K^ 0)\}\) are the prototypes of T-invariant algebras. Introducing on an arbitrary non-compact Riemann surface, a Cauchy transform operator which acts on measures and solves an inhomogeneous \({\bar \partial}\)-equation, we proceed to give an outline of a theory of T-invariant algebras on Riemann surfaces with appliations to meromorphic approximation theory. Information on Gleason parts is also obtained. Further developments will appear elsewhere.

MSC:

30E10 Approximation in the complex plane
Full Text: DOI

References:

[1] DOI: 10.1007/BF01447838 · Zbl 0038.23502 · doi:10.1007/BF01447838
[2] DOI: 10.1007/BF02849323 · Zbl 0143.35904 · doi:10.1007/BF02849323
[3] Wilken, Pacific J. Math. 26 pp 621– (1968) · Zbl 0188.44902 · doi:10.2140/pjm.1968.26.621
[4] DOI: 10.2307/1971167 · Zbl 0423.30035 · doi:10.2307/1971167
[5] DOI: 10.2307/1993524 · Zbl 0141.12204 · doi:10.2307/1993524
[6] Bishop, Pacific J. Math. 9 pp 629– (1959) · Zbl 0087.28503 · doi:10.2140/pjm.1959.9.629
[7] DOI: 10.1016/0001-8708(68)90019-4 · Zbl 0221.46053 · doi:10.1016/0001-8708(68)90019-4
[8] DOI: 10.1007/BF01360812 · Zbl 0179.11402 · doi:10.1007/BF01360812
[9] Gamelin, Uniform Algebras (1984)
[10] DOI: 10.1007/BF01458583 · Zbl 0583.30035 · doi:10.1007/BF01458583
[11] Gauthier, Approximation Theory and Functional Analysis pp 139– (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.