×

A review on singularly perturbed differential equations with turning points and interior layers. (English) Zbl 1302.34087

Summary: Singular perturbation problems with turning points arise as mathematical models for various physical phenomena. The problem with interior turning point represent one-dimensional version of stationary convection-diffusion problems with a dominant convective term and a speed field that changes its sign in the catch basin. Boundary turning point problems, on the other hand, arise in geophysics and in modeling thermal boundary layers in laminar flow. In this paper, we review some existing literature on asymptotic and numerical analysis of singularly perturbed turning point and interior layer problems. The purpose is to find out what problems are treated and what numerical/asymptotic methods are employed, with an eye towards the goal of developing general methods to solve such problems. Since major work in this area started after 1970 so this paper limits its coverage to the work done by numerous researchers between 1970 and 2011.

MSC:

34E15 Singular perturbations for ordinary differential equations
34E20 Singular perturbations, turning point theory, WKB methods for ordinary differential equations
65L11 Numerical solution of singularly perturbed problems involving ordinary differential equations
Full Text: DOI

References:

[1] Hanks, T. C., Model relating heat-flow values near, and vertical velocities of mass transport beneath, oceanic rises, J. Geophys. Res., 76, 537-544 (1971)
[2] Schlichting, H., Boundary-Layer Theory (1979), McGraw-Hill: McGraw-Hill New York · Zbl 0434.76027
[3] Smith, D. R., Singular Perturbation Theory (1985), Cambridge University press: Cambridge University press Cambridge · Zbl 0567.34055
[5] Bender, C. M.; Orszag, S. A., Advanced Mathematical Methods for Scientists and Engineers (1978), McGraw-Hill: McGraw-Hill New York · Zbl 0417.34001
[6] Wasow, W., Linear Turning Point Theory, Applied Mathematical Sciences, vol. 54 (1985), Springer: Springer New York · Zbl 0558.34049
[7] O’Malley, R. E., Singular Perturbation Methods for Ordinary Differential Equations (1991), Springer Verlag: Springer Verlag New York · Zbl 0743.34059
[8] Johnson, R. S., Singular Perturbation Theory, Mathematical and Analytical Techniques with Applications to Engineering (2005), Springer: Springer Boston · Zbl 1234.34001
[9] De Jager, E. M., The Theory of Singular Perturbations, North Holland Series in Applied Mathematics and Mechanics (1996), Elsevier: Elsevier Amsterdam
[10] Roos, H. G.; Stynes, M.; Tobiska, L., Robust numerical methods for singularly perturbed differential equations, Convection-Diffusion-Reaction and Flow Problems (1996), Springer · Zbl 0844.65075
[11] Miranker, W. L., Numerical Methods for Stiff Equations and Singular Perturbation Problems (1981), Reidel Publishing Co.: Reidel Publishing Co. Dordrecht-Boston-London · Zbl 0454.65051
[12] Miller, J. J.H., Application of Advanced Computational Methods for Boundary and Interior Layers (1993), Boole Press: Boole Press Dublin · Zbl 0782.00036
[13] Hemker, P. W.; Miller, J. J.H., Numerical Analysis of Singular Perturbation Problems (1979), Academic press: Academic press New York · Zbl 0407.00011
[14] Miller, J. J.H., Singular Perturbation Problem in Chemical Physics (1997), John Wiley & Sons: John Wiley & Sons New York
[15] Eckhaus, W., Matched Asymptotic Expansions and Singular Perturbations (1973), North Holland: North Holland Amsterdam · Zbl 0255.34002
[16] Eckhaus, W., Asymptotic Analysis of Singular Perturbations (1979), North Holland: North Holland Amsterdam · Zbl 0421.34057
[17] Kevorkian, J.; Cole, J. D., Multiple Scale and Perturbation Methods (1996), Springer-Verlag: Springer-Verlag New York · Zbl 0846.34001
[18] Liseikin, V. D., Layer Resolving Grids and Transformations for Singular Perturbation Problems (2001), VSP Utrecht: VSP Utrecht Boston
[19] Farrell, P. A.; Hegarty, A. F.; Miller, J. J.H.; O’Riordon, E.; Shishkin, G. I., Robust Computational Techniques for Boundary Layers (2000), Chapman and Hall, CRC Press: Chapman and Hall, CRC Press Boca Raton, USA · Zbl 0964.65083
[20] Miller, J. J.H.; O’Riordan, E.; Shishkin, G. I., Fitted Numerical Methods for Singular Perturbation Problems (1996), World Scientific Publishing Co.: World Scientific Publishing Co. Singapore · Zbl 0915.65097
[21] Frank, L. S., Singular Perturbations in Elastic Theory, Analysis and its Applications, 1 (1997), IOS Press, Amsterdam Ohmsha Ltd.: IOS Press, Amsterdam Ohmsha Ltd. Tokyo · Zbl 0963.74001
[22] Kaplaun, S., Fluid Mechanics and Singular Perturbations (1967), Academic press: Academic press New York
[23] Kevorkian, J.; Cole, J. D., Perturbation Methods in Applied Mathematics (1981), Springer-Verlag: Springer-Verlag New York · Zbl 0456.34001
[24] Doolan, E. P.; Miller, J. J.H.; Schilders, W. H.A., Uniform Numerical Methods for Problems with Initial and Boundary Layers (1980), Boole Press: Boole Press Dublin · Zbl 0459.65058
[25] Naidu, D. S.; Rao, A. K., Singular Perturbation Analysis of Discrete Control Systems (1980), Springer-Verlag: Springer-Verlag New York · Zbl 0575.34002
[26] Verlhulst, F., Methods and Applications of Singular Perturbations, Boundary layers and Multiple Time Scale Dynamics (2000), Springer-Verlag: Springer-Verlag New York
[27] Mortell, M. P.; O’Malley, R. E.; Pokrovskii, A.; Sobolev, V., Singular Perturbations and Hysteresis (2005), SIAM: SIAM Philadelphia · Zbl 1067.34003
[28] Bohé, A., Free layers and singular jumps in some singularly perturbed boundary value problems with turning points, Methods Appl. Anal., 3, 249-269 (1994) · Zbl 0854.34057
[29] Matkowsky, B. J., (Meyer, R. E.; Parter, S. V., Singular Perturbations, Stochastic Differential Equations and Applications, in Singular Perturbations and Asymptotics (1980), Academic Press: Academic Press New York), 109-147 · Zbl 0494.60052
[30] Fife, P. C., Dynamics of Internal Layers and Diffusive Interfaces (1988), SIAM: SIAM Philadelphia · Zbl 0684.35001
[31] Butuzov, V. F.; Vasileva, A. B., The asymptotic theory of contrasting spatial structures, USSR Comput. Math. Math. Phys., 28, 26-36 (1988) · Zbl 0702.35124
[32] Grasman, J., Small random perturbations of dynamical systems with applications in population genetics, Lect. Notes Math., 711, 158-175 (1979) · Zbl 0411.35040
[33] Miller, J. J.H.; O’Riordan, E.; Shishkin, G. I.; Wang, S., A parameter-uniform Schwarz method for singularly perturbed reaction-diffusion problem with an interior layer, Appl. Numer. Math., 35, 323-337 (2000) · Zbl 0967.65086
[34] Ascher, U. M.; Mattheij, R. M.M.; Russell, R. D., Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (1988), Prentice-Hall: Prentice-Hall Englewood Cliffs, New Jersy · Zbl 0671.65063
[35] Kadalbajoo, M. K.; Reddy, Y. N., Asymptotic and numerical analysis of singular perturbation problems: a survey, Appl. Math. Comput., 30, 3, 223-259 (1989) · Zbl 0678.65059
[36] Kadalbajoo, M. K.; Patidar, K. C., A survey of numerical techniques for solving singularly perturbed ordinary differential equations, Appl. Math. Comput., 130, 457-510 (2002) · Zbl 1026.65059
[37] Kadalbajoo, M. K.; Patidar, K. C., Singularly perturbed problems in partial differential equations: a survey, Appl. Math. Comput., 134, 371-429 (2003) · Zbl 1024.35007
[38] Kadalbajoo, M. K.; Gupta, V., A brief survey on numerical methods for solving singularly perturbed problems, Appl. Math. Comput., 217, 3641-3716 (2010) · Zbl 1208.65105
[39] Allen, S.; Cahn, J. W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27, 1084-1095 (1979)
[40] Shao, S., Boundary and interior layer behavior in a time-dependent singularly perturbed system, Nonlinear Anal., 22, 9, 1105-1119 (1994) · Zbl 0833.35058
[41] Li, S.; Shishkin, G. I.; Shishkina, L. P., Approximation of the solution and its derivatives for the singularly perturbed Black-Scholes equation with non-smooth initial data, Comp. Math. Math. Phys., 47, 3, 442-462 (2007) · Zbl 1210.91134
[42] Dorr, F. W.; Parter, S. V., Singular perturbations of nonlinear boundary value problems with turning points, J. Math. Anal. Appl., 29, 273-293 (1970) · Zbl 0169.10701
[43] Ackerberg, R. C.; O’Malley, R. E., Boundary layer problems exhibiting resonance, Stud. Appl. Math., 49, 277-295 (1970) · Zbl 0198.12901
[44] Sibuya, Y., Asymptotic solutions of a system of linear ordinary differential equations containing a parameter, Funkcial Ekvac., 4, 83-113 (1962) · Zbl 0123.04902
[45] Hanson, R. J.; Russell, D. L., Classification and reduction of second order systems at a turning point, J. Math. Phys., 46, 74-92 (1967) · Zbl 0207.38501
[46] O’Malley, R. E., On boundary value problems for a singularly perturbed differential equation with a turning point, SIAM J. Math. Anal., 1, 479-490 (1970) · Zbl 0208.12301
[47] Lee, R. Y., On uniform simplification of linear differential equations in a full neighborhood of a turning point, J. Math. Anal. Appl., 27, 501-510 (1969) · Zbl 0182.11604
[48] Watts, A. M., A singular perturbation problem with a turning point, Bull. Austral. Math. Soc., 5, 61-73 (1971) · Zbl 0223.34051
[50] Cook, L. P.; Eckhaus, W., Resonance in a boundary value problem of singular perturbation type, Stud. Appl. Math., 52, 129-139 (1973) · Zbl 0264.34070
[52] Kreiss, H. O.; Parter, S. V., Remarks on singular perturbations with turning points, SIAM J. Math. Anal., 5, 230-251 (1974) · Zbl 0302.34074
[53] Miranker, W. L.; Morreeuw, J. P., Semi-analytic numerical studies of turning point problems arising in stiff boundary value problems, Math. Corrzp., 28, 1017-1034 (1974) · Zbl 0298.65055
[54] Barrett, K. E., The numerical solution of singular-perturbation boundary-value problems, Quart. J. Mech. Appl. Math., 27, 57-68 (1974) · Zbl 0285.65053
[55] Matkowsky, B. J., On boundary layer problems exhibiting resonance, SIAM Rev., 17, 82-100 (1975)
[56] Howes, F. A., Singularly perturbed nonlinear boundary value problems with turning points, SIAM J. Math. Anal., 6, 644-660 (1975) · Zbl 0307.34055
[58] Groen, P. P.N., Spectral properties of second-order singularly perturbed boundary value problems with turning points, J. Math. Anal. Appl., 57, 1, 119-149 (1977) · Zbl 0345.34045
[60] Grasman, J.; Matkowsky, B. J., A variational approach to singularly perturbed boundary value problem for ordinary and partial differential equations with turning points, SIAM J. Appl. Math., 32, 588-597 (1977) · Zbl 0392.34038
[61] Abrahamsson, L. R., A priori estimates for solution of singular perturbations with a turning point, Stud. Appl. Math., 56, 51-69 (1977) · Zbl 0355.34048
[62] Nakano, M., On a matching method for a turning point problem, Kodai Math. Sem. Rep., 2, 55-60 (1977) · Zbl 0401.34048
[63] Nakano, M., Second-order linear ordinary differential equations with turning points and singularities. I., Kodai Math. Sem. Rep., 29, 1-2, 88-102 (1977) · Zbl 0409.34055
[64] Evgrafov, M. A.; Fedorjuk, M. V., Asymptotic behavior of solutions of the equation \(w''(z) - p(z, \lambda) w(z) = 0\) as \(\lambda \to \infty\) in the complex z-plane, Uspehi Mat. Nauk., 21, 1, 3-50 (1966), (127) · Zbl 0173.33801
[65] Nakano, M., Second-order linear ordinary differential equations with turning points and singularities. II, Kodai Math. J., 1, 2, 304-312 (1978) · Zbl 0423.34079
[66] Niijima, K., On the behavior of solutions of a singularly perturbed boundary value problem with a turning point, SIAM J. Math. Anal., 9, 2, 298-311 (1978) · Zbl 0405.34020
[67] Kopell, N., A geometric approach to boundary layer problems exhibiting resonance, SIAM J. Appl. Math., 37, 2, 436-458 (1979) · Zbl 0417.34051
[69] De Groen, P. P.N., The resonance in a singular perturbation problem of turning point type, SIAM J. Math. Anal., 11, 1-22 (1980) · Zbl 0424.34021
[70] Farrell, P. A., A uniformly convergent difference scheme for turning point problems, (Miller, J. J.H., Boundary and Interior layers-Computational and Asymptotic methods (1980), Boole press: Boole press Dublin), 270-274 · Zbl 0455.76026
[71] Farrell, P. A., Sufficient conditions for the uniform convergence of difference schemes for singularly perturbed turning and non-turning point problems, (Miller, J. J.H., Computational and Asymptotic Methods for Boundary and Interior Layers (1982), Boole press: Boole press Dublin), 230-235 · Zbl 0532.65058
[74] Allen, D. N.; Southwell, R. V., Relaxation methods applied to determine the motion, in 2D, of a viscous fluid past a fixed cylinder, Quart. J. Mech. Appl. Math. VIII, 2, 129-145 (1955) · Zbl 0064.19802
[75] Sibuya, Y., A theorem concerning uniform simplification at a transition point and the problem of resonance, SIAM J. Math. Anal., 12, 5, 653-668 (1981) · Zbl 0463.34030
[76] Williams, M., Another look at Ackerberg-O’Malley resonance, SIAM J. Appl. Math., 41, 288-293 (1981) · Zbl 0472.34035
[77] Kopell, N., A geometric approach to boundary layer problems exhibiting resonance, SIAM J. Appl. Math., 37, 436-458 (1979) · Zbl 0417.34051
[78] Niijima, K., Approximate solutions of singular perturbation problems with a turning point, Funkcial. Ekvac., 24, 3, 259-280 (1981) · Zbl 0487.34064
[79] Kreiss, H. O., Resonance for singular perturbation problems, SIAM J. Appl. Math., 41, 2, 331-344 (1981) · Zbl 0468.34022
[81] Lewis, G. N., Turning point problems and resonance, IMA J. Appl. Math., 28, 169-183 (1982) · Zbl 0502.34046
[82] Olver, F. W., Sufficient conditions for Ackerberg-O’Malley resonance, SIAM J. Math. Anal., 9, 328-355 (1978) · Zbl 0375.34034
[84] O’Malley, R. E., Shock and transition layers for singularly perturbed second-order vector systems, SIAM J. Appl. Math., 43, 4, 935-943 (1983) · Zbl 0523.34014
[85] Lin, Ching-Her, The sufficiency of the Matkowsky condition in the problem of resonance, Trans. Am. Math. Soc., 278, 2, 647-670 (1983) · Zbl 0513.34055
[88] Berger, A. E.; Han, H.; Kellogg, R. B., A priori estimates and analysis of a numerical method for a turning point problem, Math. Comput., 42, 465-492 (1984) · Zbl 0542.34050
[89] El-Mistikawy, T. M.; Werle, M. J., Numerical methods for boundary layers with blowing - The exponential box scheme, AIAA J., 16, 749-751 (1978) · Zbl 0383.76018
[90] Markowich, P. A., A finite difference method for the basic stationary semiconductor device equations: progress in science and computations, 5, Numerical Boundary Value ODEs (1985), Birkhauser: Birkhauser Boston, MA, pp. 285-301 · Zbl 0556.65070
[91] Lange, C. G.; Miura, R. M., Singular perturbation analysis of boundary-value problems for differential-difference equations, SIAM J. Appl. Math., 42, 502-531 (1982) · Zbl 0515.34058
[92] Lange, C. G.; Miura, R. M., Singular perturbation of boundary-value problems for differential-difference equations II. Rapid oscillations and resonances, SIAM J. Appl. Math., 45, 5, 687-707 (1985) · Zbl 0623.34050
[93] Lange, C. G.; Miura, R. M., Singular perturbation of boundary-value problems for differential-difference equations III. Turning point problems, SIAM J. Appl. Math., 45, 5, 708-734 (1985) · Zbl 0623.34051
[94] O’Donnell, M. A., Turning point behavior in singularly perturbed nonlinear systems, Nonlinear Anal., 9, 4, 381-398 (1985) · Zbl 0534.34065
[95] Wazwaz, A. M.; Hanson, F. B., Matched uniform approximations for a singular boundary and interior turning point, SIAM J. Appl. Math., 46, 6, 943-961 (1986) · Zbl 0636.34051
[96] O’Malley, R. E., Introduction to Singular Perturbations (1974), Academic Press: Academic Press New York · Zbl 0287.34062
[97] Wazwaz, A. M.; Hanson, F. B., Singular boundary resonance with turning point resonance, SIAM J. Appl. Math., 46, 6, 962-977 (1986) · Zbl 0636.34052
[98] Skinner, L. A., Uniform solution of boundary layer problems exhibiting resonance, SIAM J. Appl. Math., 47, 2, 225-231 (1987) · Zbl 0619.34059
[100] Farrell, P. A., Sufficient conditions for the uniform convergence of a difference scheme for a singularly perturbed turning point problem, SIAM J. Numer. Anal., 25, 3, 618-643 (1988) · Zbl 0646.65068
[101] Il’in, A. M., A difference scheme for a differential equation with a small parameter affecting the highest derivative, Mat. Zametki, 6, 237-248 (1969), (in Russian) · Zbl 0185.42203
[105] Vulanovic, R., On numerical solution of a mildly nonlinear turning point problem, RAIRO Model. Math. Anal. Numer., 24, 6, 765-783 (1990) · Zbl 0716.65075
[106] Vulanovic, R., An \(L^1\)-stable scheme for linear turning point problems, Z. Angew. Math. Mech., 71, 10, 403-410 (1991) · Zbl 0754.65076
[107] Vulanovic, R.; Lin, P., Numerical solution of quasilinear attractive turning point problems, Comput. Math. Appl., 23, 12, 75-82 (1992) · Zbl 0773.65063
[108] Wazwaz, A. M., Two turning points of second order, SIAM J. Appl. Math., 50, 3, 883-892 (1990) · Zbl 0698.34051
[109] Howes, F. A., An asymptotic-numerical method for a model system with turning points, J. Comput. Appl. Math., 29, 343-356 (1990) · Zbl 0704.65058
[110] Barrett, K. E., Numerical study of the flow between rotating coaxial discs, Z. Angew. Math. Phys., 26, 807-817 (1975) · Zbl 0326.76035
[111] Lin, P., A numerical method for quasilinear singular perturbation problems with turning points, Computing, 46, 155-164 (1991) · Zbl 0737.65069
[112] Lin, P., A uniformly convergent difference scheme for a semilinear turning point problem, Numer. Math. J. Chinese Univ., 13, 3, 237-244 (1991) · Zbl 0756.65109
[113] Harris, W. A.; Shao, S., Refined approximations of the solutions of a coupled system with turning points, J. Differ. Equ., 92, 1, 125-144 (1991) · Zbl 0732.34023
[114] Wazwaz, A. M., Resonance and asymptotic solution of a singular perturbation problem, SIAM J. Appl. Math., 49, 3, 231-244 (1992) · Zbl 0780.34043
[115] Wazwaz, A. M., Asymptotic solutions of an eigenvalue problem with several second-order turning points, IMA J. Appl. Math., 48, 1, 39-51 (1992) · Zbl 0757.34046
[116] Lopez, L., Stability of a three point scheme for a linear second order singularly perturbed BVPs with turning points, Appl. Math. Comput., 52, 279-300 (1992) · Zbl 0764.65043
[117] Vulanovic, R.; Farrell, P. A., Continuous and numerical analysis of a multiple boundary turning point problem, SIAM J. Numer. Anal., 30, 5, 1400-1418 (1993) · Zbl 0787.65058
[118] Roos, H. G.; Vulanovic, R., A higher order uniform convergence result for a turning point problem, Z. Anal. Anwen., 12, 4, 723-728 (1993) · Zbl 0796.34039
[119] Clavero, C.; Lisbona, F., Uniformly convergent finite difference methods for singularly perturbed turning point problems, Numer. Algorithms, 4, 339-359 (1993) · Zbl 0790.65074
[120] Mazzia, F.; Trigiante, D., Numerical solution of singular perturbation problems, CALCOLO, 30, 355-369 (1993) · Zbl 0819.65113
[121] Skinner, L. A., Matched expansion solutions of the first-order turning point problem, SIAM J. Math. Anal., 25, 5, 1402-1411 (1994) · Zbl 0809.34071
[122] Sun, G. F.; Stynes, M., Finite element methods on piecewise equidistant meshes for interior turning point problems, Numer. Algorithms, 8, 1, 111-129 (1994) · Zbl 0811.65059
[123] Lagerstorm, P. A., Matched Asymptotic Expansions (1988), Springer Verlag: Springer Verlag New York · Zbl 0666.34064
[124] Ward, M. J.; Reyna, L. G., Internal layers, small eigenvalues, and the sensitivity of metastable motion, SIAM J. Appl. Math., 55, 2, 425-445 (1995) · Zbl 0818.35008
[125] Laforgue, J. G.L.; O’Malley, R. E., Shock layer movement for Burgers equation, SIAM J. Appl. Math., 55, 2, 332-347 (1995) · Zbl 0820.35119
[127] Surla, K.; Uzelac, Z., An analysis and improvement of El-Mistikawy and Werle scheme, Publ. Math. Inst., 54, 69, 144-155 (1993) · Zbl 0809.65086
[128] Kalachëv, L. V.; Mattheij, R. M.M., On optimally scaled systems for second-order scalar singularly perturbed problems, Appl. Math. Comput., 68, 1, 71-93 (1995) · Zbl 0821.65058
[129] Shao, S.; Chin, R. C.Y., An asymptotic-numerical method for a time-dependent singularly perturbed system with turning points, Numer. Methods Partial Differ. Equ., 12, 4, 441-460 (1996) · Zbl 0859.65099
[130] Nakano, M., On a third order linear ordinary differential equation with a turning singular point, Nonlinear Anal. Theory Methods Appl., 30, 4, 2189-2196 (1997) · Zbl 0889.34052
[131] Iwano, M.; Sibuya, Y., Reduction of the order of a linear ordinary differential equation containing a small parameter, Koddai Math. Sem. Rep., 15, 1-28 (1963) · Zbl 0115.07001
[132] Nakano, M., On an \(n\)-th order linear ordinary differential equation with a turning-singular point, Tokyo J. Math., 21, 1, 201-215 (1998) · Zbl 0911.34053
[133] Natesan, S.; Ramanujam, N., A computational method for solving singularly perturbed turning point problems exhibiting twin boundary layers, Appl. Math. Comput., 93, 259-275 (1998) · Zbl 0943.65086
[134] Natesan, S.; Ramanujam, N., Initial-value technique for singularly-perturbed turning-point problems exhibiting twin boundary layers, J. Optim. Theory Appl., 99, 1, 37-52 (1998) · Zbl 0983.34050
[135] Brugnano, L.; Trigiante, D., A new mesh selection strategy for ODEs, Appl. Numer. Math., 24, 1, 1-21 (1997) · Zbl 0880.65066
[136] Gasparo, M. G.; Macconi, M., Initial-value methods for second-order singularly perturbed boundary-value problems, J. Optim. Theory Appl., 66, 197-210 (1990) · Zbl 0681.34018
[137] Hanlin, Z.; Heping, Z., Regular singular crossings on nonlinear systems with turning point, J. Shanghai Univ., 2, 3, 190-193 (1998) · Zbl 1126.34350
[138] Hanlin, Z.; Heping, Z., On the singular perturbation of nonlinear systems with turning points, J. Shanghai Univ., 3, 1, 77-80 (1999) · Zbl 0965.34043
[140] Kolesov, A. Yu.; Rozov, N. Kh., Existence of solutions with turning points for nonlinear singularly perturbed boundary value problems, Mat. Zametki, 67, 4, 520-524 (2000), Transl. Math. Notes 67(3-4), 444-447 (2000) · Zbl 1036.34068
[141] Kadalbajoo, M. K.; Patidar, K. C., Variable mesh spline approximation method for solving singularly perturbed turning point problems having boundary layer(s), Comput. Math. Appl., 42, 1439-1453 (2000) · Zbl 1003.65085
[142] Linß, T.; Vulanovic, R., Uniform numerical methods for semilinear problems with an attractive boundary turning point, Novi Sad J. Math., 31, 2, 99-114 (2001) · Zbl 1016.65055
[143] Andreev, V. B.; Savin, I. A., On the uniform convergence with respect to a small parameter of A.A. Samarskii’s monotone scheme and its modification, Comput. Math. Math. Phys., 35, 739-752 (1995)
[144] Linß, T., Robustness of an upwind finite difference scheme for semilinear convection-diffusion problems with an attractive boundary turning point, J. Comput. Math., 21, 4, 401-410 (2003) · Zbl 1061.65072
[145] Shishkin, G. I., Grid approximations to singularly perturbed parabolic equations with turning points, Differ. Equ., 37, 7, 137-150 (2001) · Zbl 0998.65085
[146] Dimitrova, I. Tr.; Vulkov, L. G., Higher order \(ε\) uniform methods for singularly perturbed reaction-diffusion problems with discontinuous coefficients and singular sources, Filomat, 15, 247-256 (2001) · Zbl 1032.65090
[147] Gartland, E. C., Compact high-order finite differences for interface problems in one dimension, IMA J. Numer. Anal., 9, 243-260 (1989) · Zbl 0679.65059
[148] Nakano, M., On the complex WKB method for a secondary turning point problem, Tokyo J. Math., 24, 2, 343-358 (2001) · Zbl 1004.34042
[149] Linß, T., Finite difference schemes for convection-diffusion problems with a concentrated source and a discontinuous convection field, Comput. Methods Appl. Math., 2, 1, 41-49 (2002) · Zbl 0995.65078
[150] Wong, R.; Yang, H., On an internal boundary layer problem, J. Comput. Appl. Math., 144, 1-2, 301-323 (2002) · Zbl 1012.34049
[151] Wong, R.; Yang, H., On the boundary-layer problem, Stud. Appl. Math., 108, 369-398 (2002) · Zbl 1152.34360
[152] Wong, R.; Yang, H., On the Ackerberg-O’Malley resonance, Stud. Appl. Math., 110, 157-179 (2003) · Zbl 1141.34331
[153] Dunne, R. K.; O’Riordan, E.; Shishkin, G. I., A fitted mesh method for a class of singularly perturbed parabolic problems with a boundary turning point, Comput. Methods Appl. Math., 3, 3, 361-372 (2003) · Zbl 1036.65068
[154] Lin, P.; O’Malley, R. E., The numerical solution of a challenging class of turning point problems, SIAM J. Sci. Comput., 25, 3, 927-941 (2003) · Zbl 1147.34346
[155] Knaub, K. R.; O’Malley, R. E., The motion of internal layers in singularly perturbed advection-diffusion-reaction equations, Stud. Appl. Math., 112, 1, 1-15 (2004) · Zbl 1141.35397
[156] Natesan, S.; Jayakumar, J.; Aguiar, A. V., Parameter uniform numerical method for singularly perturbed turning point problems exhibiting boundary layers, J. Comput. Appl. Math., 158, 121-134 (2003) · Zbl 1033.65061
[157] O’Riordan, E.; Shishkin, G. I., Singularly perturbed parabolic problems with non-smooth data, J. Comput. Appl. Math., 166, 233-245 (2004) · Zbl 1041.65071
[158] Kopteva, N., How accurate is the streamline-diffusion FEM inside characteristic (boundary and interior) layers?, Comput. Methods Appl. Mech. Eng., 193, 4875-4889 (2004) · Zbl 1112.76392
[159] Shishkin, G. I.; Shishkina, L. P.; Hemker, P. W., A class of singularly perturbed convection-diffusion problems with a moving interior layer. An a posteriori adaptive mesh technique, Comput. Methods Appl. Math., 4, 1, 105-127 (2004) · Zbl 1049.65085
[160] Angelova, I. Tr.; Vulkov, L. G., Singularly perturbed differential equations with discontinuous coefficients and concentrated factors, Appl. Math. Comput., 158, 683-701 (2004) · Zbl 1071.34053
[161] Shishkin, G. I., Limitations of adaptive mesh refinement techniques for singularly perturbed problems with a moving interior layer, J. Comput. Appl. Math., 166, 267-280 (2004) · Zbl 1049.65101
[162] Farrell, P. A.; Hegarty, A. F.; Miller, J. J.H.; O’Riordan, E.; Shishkin, G. I., Global maximum norm parameter uniform numerical method for a singularly perturbed convection-diffusion problem with discontinuous convection coefficient, Math. Comput. Model., 40, 1375-1392 (2004) · Zbl 1075.65100
[163] Farrell, P. A.; Hegarty, A. F.; Miller, J. J.H.; O’Riordan, E.; Shishkin, G. I., Singularly perturbed convection-diffusion problems with boundary and weak interior layers, J. Comput. Appl. Math., 166, 133-151 (2004) · Zbl 1041.65059
[164] Mazzia, F.; Trigiante, D., A hybrid mesh selection strategy based on conditioning for boundary value ODE problems, Numer. Algorithms, 36, 2, 169-187 (2004) · Zbl 1050.65072
[165] Emel’yanov, K. V., On an exponential fitting scheme for a singularly perturbed problem, Zh. Vychisl. Mat. Mat. Fiz., 45, 4, 669-676 (2005), (translation in Comput. Math. Math. Phys. 45(4) (2005) 645-652) · Zbl 1078.65065
[166] Ramos, J. I., An exponentially-fitted method for singularly perturbed ordinary differential equations with turning points and parabolic problems, Appl. Math. Comput., 165, 549-564 (2005) · Zbl 1070.65089
[167] Cen, Z., A hybrid difference scheme for a singularly perturbed convection-diffusion problem with discontinuous convection coefficient, Appl. Math. Comput., 169, 689-699 (2005) · Zbl 1087.65071
[168] Farrell, P. A.; Hegarty, A. F.; Miller, J. J.H.; O’Riordan, E.; Shishkin, G. I., A class of singularly perturbed semilinear differential equations with interior layers, Math. Comput., 74, 1759-1776 (2005) · Zbl 1126.65063
[169] Cash, J. R.; Mazzia, F., A new mesh selection algorithm, based on conditioning, for two-point boundary value codes, J. Comput. Appl. Math., 183, 362-381 (2005) · Zbl 1076.65065
[170] Kan’, Ni Min’; Vasilieva, A. B.; Dmitriev, M. G., Equivalence of two sets of transition points corresponding to solutions with interior transition layers, Math. Notes, 79, 1, 109-115 (2006) · Zbl 1158.34036
[171] Shishkin, G. I., Grid approximation of singularly perturbed parabolic equations in the presence of weak and strong transient layers induced by a discontinuous right-hand side, Comput. Math. Math. Phys., 46, 3, 388-401 (2006) · Zbl 1210.35145
[172] Styne, M.; Kopteva, N., Numerical analysis of singularly perturbed non-linear reaction-diffusion problems with multiple solutions, Comput. Math. Appl., 51, 857-864 (2006) · Zbl 1134.65356
[173] Matzinger, E., Asymptotic behavior of solutions near a turning point: the example of the Brusselator equation, J. Differ. Equ., 220, 478-510 (2006) · Zbl 1087.34035
[174] Shanthi, V.; Ramanujam, N., Asymptotic numerical methods for boundary value problems for singularly perturbed fourth-order ordinary differential equations with weak interior layer, Appl. Math. Comput., 172, 252-266 (2006) · Zbl 1093.65075
[175] Shanthi, V.; Ramanujam, N.; Natesan, S., Fitted mesh method for singularly perturbed reaction-convection-diffusion problems with boundary and interior layers, J. Appl. Math. Comput., 22, 1-2, 49-65 (2006) · Zbl 1109.65068
[176] Yang, H., On a singular perturbation problem with two second-order turning points, J. Comput. Appl. Math., 190, 287-303 (2006) · Zbl 1103.34047
[177] Cash, J. R.; Mazzia, F.; Sumarti, N.; Trigiante, N., The role of conditioning in mesh selection algorithms for first order systems of linear two point boundary value problems, J. Comput. Appl. Math., 185, 212-224 (2006) · Zbl 1077.65084
[178] Valanarasu, T.; Ramanujam, N., Asymptotic initial value method for second-order singular perturbation problems of reaction-diffusion type with a discontinuous source term, J. Optim. Theory Appl., 133, 371-383 (2007) · Zbl 1153.65076
[179] Valanarasu, T.; Ramanujam, N., Asymptotic initial value method for second-order singular perturbation problems of convection-diffusion type with a discontinuous source term, J. Appl. Math. Comput., 23, 1-2, 141-152 (2007) · Zbl 1115.65087
[180] Shishkin, G. I., Grid approximation of singularly perturbed parabolic equations with piecewise continuous initial-boundary conditions, Math. Model. Anal., 12, 2, 235-254 (2007) · Zbl 1139.65065
[181] Tamilselvan, A.; Ramanujam, N.; Shanthi, V., A numerical method for singularly perturbed weakly coupled system of two second order ordinary differential equations with discontinuous source term, J. Comput. Appl. Math., 202, 203-216 (2007) · Zbl 1115.65086
[182] Valanarasu, T.; Ramanujam, N., An asymptotic numerical method for singularly perturbed third-order ordinary differential equations with a discontinuous source term, Novi Sad J. Math., 37, 2, 41-57 (2007) · Zbl 1164.65026
[183] Shanthi, V.; Ramanujam, N., An asymptotic numerical method for fourth order singular perturbation problems with a discontinuous source term, Int. J. Comp. Math., 85, 7, 1147-1159 (2008) · Zbl 1158.65052
[184] Babu, A. R.; Ramanujam, N., An asymptotic finite element method for singularly perturbed third and fourth order ordinary differential equations with discontinuous source term, Appl. Math. Comput., 191, 372-380 (2007) · Zbl 1193.65141
[185] Mahmoudi, F.; Malchiodi, A.; Wei, J., Transition layer for the heterogeneous Allen-Cahn equation, Ann. Inst. H. Poincare Anal. Non Linaire, 25, 3, 609-631 (2008) · Zbl 1148.35030
[186] Pino, M. Del; Kowalczyk, M.; Wei, J., Resonance and interior layers in an inhomogeneous phase transition model, SIAM J. Math. Anal., 38, 5, 1542-1564 (2007) · Zbl 1229.35076
[187] Chen, L.; Wang, Y.; Wu, J., Stability of streamline diffusion finite element method for turning point problems, J. Comput. Appl. Math., 220, 712-724 (2008) · Zbl 1153.65081
[188] Mythili, P. R.; Ramanujam, N., A hybrid difference scheme for singularly perturbed second order ordinary differential equations with discontinuous convection coefficient and mixed type boundary conditions, Int. J. Comput. Methods, 5, 4, 575-593 (2008) · Zbl 1264.65117
[189] Farrell, P. A.; O’Riordan, E.; Shishkin, G. I., A class of singularly perturbed quasilinear differential equations with interior layers, Math. Comput., 78, 265, 103-127 (2009) · Zbl 1198.65125
[190] Amodio, P.; Settanni, G., Variable step/order generalized upwind methods for the numerical solution of second order singular perturbation problems, J. Num. Anal., 4, 1-2, 65-76 (2009), (Industrial and Applied Mathematics) · Zbl 1191.65097
[191] Cash, J. R.; Mazzia, F., Conditioning and hybrid mesh selection algorithms for two point boundary value problems, Scalable Comput.: Pract. Experience, 10, 4, 347-361 (2009)
[192] Kadalbajoo, M. K.; Patidar, K. C., Variable mesh spline approximation method for solving singularly perturbed turning point problems having interior layer, Neu. Par. Scien. Comput., 18, 2, 207-220 (2010) · Zbl 1210.65136
[193] Rai, P.; Sharma, K. K., Parameter uniform numerical method for singularly perturbed differential-difference equations with interior layer, Int. J. Comput. Math., 88, 16, 3416-3435 (2011) · Zbl 1247.65100
[194] Rai, P.; Sharma, K. K., Numerical analysis of singularly perturbed delay differential turning point problem, Appl. Math. Comput., 218, 3483-3498 (2011) · Zbl 1319.65056
[195] Rai, P.; Sharma, K. K., Numerical method for singularly perturbed differential-difference equations with turning point, Int. J. Pure Appl. Math., 73, 4, 451-470 (2011) · Zbl 1247.65101
[196] Rai, P.; Sharma, K. K., Numerical study of singularly perturbed differential-difference equation arising in the modeling of neuronal variability, Comput. Math. Appl., 63, 118-132 (2012) · Zbl 1238.65063
[197] Rai, P.; Sharma, K. K., Fitted mesh numerical method for singularly perturbed delay differential turning point problems exhibiting boundary layers, Int. J. Comput. Math., 89, 7, 944-961 (2012) · Zbl 1255.65143
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.