×

A numerical method for quasilinear singular perturbation problems with turning points. (English) Zbl 0737.65069

The author considers the following problem (*) \(\varepsilon y''+b(x,y)y'- c(x,y)=0\) for \(x\in[-1,1]\), \(y(-1)=A\), \(y(1)=B\) where \(0<\varepsilon\ll 1\) is the perturbation parameter, \(b\) and \(c\in C^ 2([- 1,1]\times{\mathbb{R}})\), \(b(0,y)=0\), \(b_ x(0,y)<0\) for \(| y|\leq r+1\), \(b(x,y)\neq 0\) for \(| y|\leq r+1\) and \(x\neq 0\), \(c_ y(x,y)\geq c_ 0>0\) on \([-1,1]\times{\mathbb{R}}\) where \(r\) is a finite number and \(c_ 0\) a constant. Using the maximum principle it is shown that the solution of (*) is bounded.
Then the problem is reduced to a nonlinear initial value problem for two differential equations of the first order. This initial value problem is numerically solved by a special difference scheme and it is shown that the approximate solution converges to a solution of (*) in the maximum norm for arbitrary \(\varepsilon>0\). A numerical example illustrates the theoretical results.
Reviewer: H.Ade (Mainz)

MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations
65L12 Finite difference and finite volume methods for ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
34E15 Singular perturbations for ordinary differential equations
Full Text: DOI

References:

[1] Abrahamsson, L., Osher, S.: Monotone difference schemes for singular perturbation problems. SIAM J. Numer. Anal.19, 979–992 (1982). · Zbl 0507.65039 · doi:10.1137/0719071
[2] Berger, A. E., Han, H., Kellogg, R. B.: A priori estimates and analysis of a numerical method for a turning point problem. Math. Comp.42, 465–491 (1984). · Zbl 0542.34050 · doi:10.1090/S0025-5718-1984-0736447-2
[3] Boglaev, I. P.: On numerical integration of a singular-perturbed initial-value problem for ordinary differential equation. Zh. Vychisl. mat. i mat. fiziki25, 1009–1022 (1985). · Zbl 0582.65059
[4] Kadalbajoo, M. K., Reddy, Y. N.: Initial-value technique for a class of nonlinear singular perturbation problems. J. Optim. Theory and Appls.53, 395–406 (1987). · Zbl 0594.34017 · doi:10.1007/BF00938946
[5] Lin, Ping: Numerical solutions of some singular perturbation problems. M. Sc. thesis, Nanjing University, Nanjing, China, 1987 (in Chinese).
[6] Lin, Ping: Numerical solution of a nonlinear second order singularly perturbed ordinary differential equation. (to appear in Chinese).
[7] Lin, Ping, Su, Yucheng: Numerical solution of quasilinear singularly perturbed ordinary differential equation without turning points. Appl. Math. Mech. (English Ed.). Vol.10,No. 11 (1989). · Zbl 0735.34041
[8] Lorenz, J.: Combinations of initial and boundary value methods for a class of singular perturbation problems. In: Hemker, P. W., Miller, J. J. H., (eds.) Numerical Analysis of Singular Perturbation Problems 295–315. London: Academic Press 1979. · Zbl 0429.65086
[9] Lorenz, J.: Nonlinear boundary value problems with turning points and properties of difference schemes. In: W. Eckhaus, E. M. de Jager, (eds.) Theory and Application of Singular Perturbations Proceedings of a Conference Held in Oberwolfach, August 16–22, 1981. Lect. Notes Math. 942. Berlin Heidelberg New York: Springer 1982.
[10] Lorenz, J.: Numerical solution of a singular perturbation problem with turning points. In: Equadiff 82 (Würzburg, 1982), 432–439. Lect. Notes Math. 1017. Berlin: Springer 1983.
[11] Niijima, K.: On a difference scheme of exponential type for a nonlinear singular perturbation problem. Numer. Math.46, 521–539 (1985). · Zbl 0577.65070 · doi:10.1007/BF01389657
[12] Osher, S.: Nonlinear singular perturbation problems and one sided difference schemes. SIAM J. Numer. Anal.18, 129–144 (1981). · Zbl 0471.65069 · doi:10.1137/0718010
[13] Pandian, M. C.: A weighted difference scheme and monotone iterative methods for quasilinear boundary value problems. Applied Math. & Comp.25, 187–205 (1988). · Zbl 0664.65078 · doi:10.1016/0096-3003(88)90071-9
[14] Protter, M. M., Weinberger, H. F.: Maximum principles in differential equations. New York: Springer 1984. · Zbl 0549.35002
[15] Rall, L. R.: Computational solution of nonlinear operator equations. New York: John Wiley & Sons 1969. · Zbl 0175.15804
[16] Vulanović, R.: A uniform numerical method for quasilinear singular perturbation problems without turning points. Computing 41, 97–106 (1989). · Zbl 0664.65082 · doi:10.1007/BF02238732
[17] Vulanović, R.: On numerical solution of some quasilinear turning points problems. In: Proceedings of the BAIL V Conference, Shanghai from 20th to 24th June, 1988. · Zbl 0695.65056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.