×

Uniformly convergent finite difference methods for singularly perturbed problems with turning points. (English) Zbl 0790.65074

A family of finite difference schemes including the upwind method, Samarskij’s method and exponential fitting type methods are studied for finding the approximate solution of one-dimensional singular perturbation problems with turning points. Uniform convergence of the upwind method on irregular meshes is established. Many examples are given to illustrate the efficiency of the proposed methods.
Reviewer: M.A.Noor (Riyadh)

MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations
65L12 Finite difference and finite volume methods for ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
34E15 Singular perturbations for ordinary differential equations
Full Text: DOI

References:

[1] L.R. Abrahamsson, A priori estimates for solutions of singular perturbations with a turning point, Report No 56, Department of Computer Science, University of Uppsala (1975). · Zbl 0355.34048
[2] M. Abramowitz and J.A. Stegun,Handbook of Mathematical Functions (National Bureau of Standards, Washington DC, 1964). · Zbl 0171.38503
[3] A. Berger, A conservative uniformly accurate difference method for a singular perturbation problem in conservation form, SIAM J. Number. Anal. 23 (1986) 1241–1252. · Zbl 0621.65090 · doi:10.1137/0723084
[4] A.E. Berger, H. Han and R.B. Kellogg, A priori estimates and analysis of a numerical method for a turning point problem, Math. Comp. 42 (1984) 465–492. · Zbl 0542.34050 · doi:10.1090/S0025-5718-1984-0736447-2
[5] C. Clavero, Métodos en diferencias sobre mallas irregulares para la integración de problemas de contorno singularmente perturbados, Tesis Doctoral, Universidad de Zaragoza (Spain) (1989).
[6] P.A. Farrell, Sufficient conditions for the uniform convergence of a difference scheme for a singularly perturbed turning point problem, SIAM J. Number. Anal. 25 (1988) 818–843. · Zbl 0646.65068 · doi:10.1137/0725038
[7] P.A. Farrell and E.C. Gartland, A uniform convergence result for a tuning point problem,Proc. 5th Int. Conf. on Boundary and Interior Layers-Computational and Asymptotic Methods (BAIL V), Shanghai (Boole Press, Dublin, 1988) pp. 127–132. · Zbl 0685.65073
[8] P.A. Farrell and A. Hegarty, On the determination of the order of uniform convergence,Proc. 13th IMACS World Congress on Computation and Applied Mathematics, eds. R. Vichnevetsky and J.J.H. Miller, IMACS (1991).
[9] R.B. Kellogg and A. Tsan, Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comp. 32 (1978) 1025–1039. · Zbl 0418.65040 · doi:10.1090/S0025-5718-1978-0483484-9
[10] V.D. Liseikin and N.N. Yanenko, On the numerical solution of equations with interior and exterior layers on a non-uniform mesh, in:Advances in Computational Methods for Boundary and Interior Layers, ed. J.J.H. Miller (Boole Press, 1984) pp. 68–80. · Zbl 0672.65070
[11] V.D. Liseikin and V.E. Petrenko, On numerical solution of nonlinear singularly perturbed problems, Sov. Math., Dokl. 36 (1988) 535–538. · Zbl 0658.65074
[12] J. Lorentz, Stability and consistency analysis of difference methods for singular perturbation problems, in:Analytical and Numerical Approaches to Asymptotic Problems in Analysis (North-Holland, 1981) pp. 141–156.
[13] M. Nagumo, Uber die Differentialgleichungy”=f(x,y,y’), Proc. Phys. Math. Soc. Japan 19 (1937) 861–866. · JFM 63.1021.04
[14] J.M. Ortega and W.C. Rheinboldt,Iterative Solutions of Nonlinear Equations in Several Variables (Academic Press, New York, 1970). · Zbl 0241.65046
[15] M. Stynes and E. O’Riordan,L 1 andL uniform convergence of a difference scheme for a semilinear singular perturbation problem, Numer. Math. 50 (1987) 519–531. · Zbl 0595.65092 · doi:10.1007/BF01408573
[16] M. Stynes and E. O’Riordan, Analysis of singularly perturbed two-point boundary value problems with turning points, Institute for Numerical and Computational Analysis, Dublin, Preprint 2 (1989).
[17] R. Vulanovic, On numerical solution of a turning point problem, Univ. u Novum Sadu Zb-Rad. Prirod. Mat. Fak-Ser. Mat. 19 (1989) 11–24. · Zbl 0678.65062
[18] R. Vulanovic, On numerical solution of a mildly nonlinear turning point problem, RAIRO Model. Math. Anal. Numer. 24 (1990) 765–783.
[19] R. Vulanovic, A second order uniform numerical method for a turning point problem, Univ. u Novum Sadu Zb-Rad. Prirod. Mat. Fak-Ser. Mat. 18 (1989) 13–30.
[20] R. Vulanovic, Quasilinear singular perturbation problems and the uniformL 1 convergence, ZAMM 69 (1989) 130–132.
[21] A. White, On the selection of equidistributing meshes for two point boundary value problems, SIAM J. Numer. Anal. 16 (1979) 472–502. · Zbl 0407.65036 · doi:10.1137/0716038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.