×

Mathematical modeling of tumor-immune cell interactions. (English) Zbl 1411.92081

Summary: The anti-tumor activity of the immune system is increasingly recognized as critical for the mounting of a prolonged and effective response to cancer growth and invasion, and for preventing recurrence following resection or treatment. As the knowledge of tumor-immune cell interactions has advanced, experimental investigation has been complemented by mathematical modeling with the goal to quantify and predict these interactions. This succinct review offers an overview of recent tumor-immune continuum modeling approaches, highlighting spatial models. The focus is on work published in the past decade, incorporating one or more immune cell types and evaluating immune cell effects on tumor progression. Due to their relevance to cancer, the following immune cells and their combinations are described: macrophages, cytotoxic T lymphocytes, natural killer cells, dendritic cells, T regulatory cells, and CD4+ T helper cells. Although important insight has been gained from a mathematical modeling perspective, the development of models incorporating patient-specific data remains an important goal yet to be realized for potential clinical benefit.

MSC:

92C37 Cell biology
35Q92 PDEs in connection with biology, chemistry and other natural sciences

References:

[1] Aguirre-Ghiso, J. A., Models, mechanisms and clinical evidence for cancer dormancy, Nat. Rev. Cancer, 7, 834-846 (2007)
[2] Al-Tameemi, M.; Chaplain, M.; d’Onofrio, A., Evasion of tumours from the control of the immune system: consequences of brief encounters, Biol. Direct, 7, 31 (2012)
[3] Alfonso, J. C.L.; Talkenberger, K.; Seifert, M.; Klink, B.; Hawkins-Daarud, A.; Swanson, K. R.; Hatzikirou, H.; Deutsch, A., The biology and mathematical modelling of glioma invasion: a review, J. R. Soc. Interface, 14 (2017)
[4] Anderson, A. R.A.; Maini, P. K., Mathematical Oncology, Bull. Math. Biol., 80, 945-953 (2018) · Zbl 1390.00112
[5] Baldock, A. L.; Rockne, R. C.; Boone, A. D.; Neal, M. L.; Hawkins-Daarud, A.; Corwin, D. M.; Bridge, C. A.; Guyman, L. A.; Trister, A. D.; Mrugala, M. M.; Rockhill, J. K.; Swanson, K. R., From patient-specific mathematical neuro-oncology to precision medicine, Front. Oncol., 3, 62 (2013)
[6] Boissonnas, A.; Fetler, L.; Zeelenberg, I. S.; Hugues, S.; Amigorena, S., In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor, J. Exp. Med., 204, 345-356 (2007)
[7] Bose, T.; Trimper, S., Noise-assisted interactions of tumor and immune cells, Phys. Rev. E, 84, 021927 (2011)
[8] Bracci, L.; Schiavoni, G.; Sistigu, A.; Belardelli, F., Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer, Cell Death Differ., 21, 15-25 (2014)
[9] Byrne, H. M., Dissecting cancer through mathematics: from the cell to the animal model, Nat. Rev. Cancer, 10, 221-230 (2010)
[10] Byrne, H. M.; Cox, S. M.; Kelly, C. E., Macrophage-tumour interactions: in vivo dynamics, Discrete Contin. Dyn. Syst. - Ser. B, 4, 81-98 (2004) · Zbl 1055.34089
[11] Cappuccio, A.; Elishmereni, M.; Agur, Z., Cancer immunotherapy by interleukin-21: potential treatment strategies evaluated in a mathematical model, Cancer Res., 66, 7293-7300 (2006)
[12] Chakrabarty, S. P.; Banerjee, S., A control theory approach to cancer remission aided by an optimal therapy, J. Biol. Syst., 18, 75-91 (2010) · Zbl 1342.92092
[13] Chanmee, T.; Ontong, P.; Konno, K.; Itano, N., Tumor-associated macrophages as major players in the tumor microenvironment, Cancers, 6, 1670-1690 (2014)
[14] Chaplain, M. A., Multiscale mathematical modelling in biology and medicine, IMA J. Appl. Math., 76, 371-388 (2011) · Zbl 1217.92055
[15] Chappell, M.; Chelliah, V.; Cherkaoui, M.; Derks, G.; Dumortier, T.; Evans, N.; Ferrarini, M.; Fornari, C.; Ghazal, P.; Guerriero, M. L.; Kirkby, N.; Lourdusamy, A.; Munafo, A.; Ward, J.; Winstone, R.; Yates, J., Mathematical modelling for combinations of immuno-oncology and anti-cancer therapies, (Quantitative Systems Pharmacology UK Meeting, Macclesfeld (2015), United Kingdom)
[16] Chen, D.; Bobko, A. A.; Gross, A. C.; Evans, R.; Marsh, C. B.; Khramtsov, V. V.; Eubank, T. D.; Friedman, A., Involvement of tumor macrophage HIFs in chemotherapy effectiveness: mathematical modeling of oxygen, pH, and glutathione, PLoS ONE, 9 (2014)
[17] Cristini, V.; Frieboes, H. B.; Li, X.; Lowengrub, J.; Macklin, P.; Sanga, S.; Wise, S. M.; Zheng, X., Nonlinear modeling and simulation of tumor growth, Sel. Top. Cancer Model (2008)
[18] d’Onofrio, A.; Gatti, F.; Cerrai, P.; Freschi, L., Delay-induced oscillatory dynamics of tumour-immune system interaction, Math. Comput. Modell., 51, 572-591 (2010) · Zbl 1190.34088
[19] De Palma, M.; Lewis, C. E., Macrophage regulation of tumor responses to anticancer therapies, Cancer Cell, 23, 277-286 (2013)
[20] De Palma, M.; Venneri, M. A.; Galli, R.; Sergi Sergi, L.; Politi, L. S.; Sampaolesi, M.; Naldini, L., Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors, Cancer Cell, 8, 211-226 (2005)
[21] de Pillis, L. G.; Radunskaya, A., A Mathematical Model of Immune Response to Tumor Invasion A2 - Bathe, K.J. Computational Fluid and Solid Mechanics 2003, 1661-1668 (2003), Elsevier Science Ltd: Elsevier Science Ltd Oxford
[22] de Pillis, L. G.; Radunskaya, A., Modeling Immune-mediated tumor growth and treatment, (d’Onofrio, A.; Gandolfi, A., Mathematical Oncology 2013 (2014), Birkhäuser: Birkhäuser New York, NY), 199-235
[23] de Pillis, L. G.; Radunskaya, A. E.; Wiseman, C. L., A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res., 65, 7950-7958 (2005)
[24] de Pillis, L. G.; Gallegos, A.; Radunskaya, A., A model of dendritic cell therapy for Melanoma, Front. Oncol., 3, 56 (2013)
[25] de Pillis, L. G.; Eladdadi, A.; Radunskaya, A. E., Modeling cancer-immune responses to therapy, J. Pharmacokinet. Pharmacodyn., 41, 461-478 (2014)
[26] de Pillis, L. G.; Caldwell, T.; Sarapata, E.; Williams, H., Mathematical modeling of regulatory t cell effects on renal cell carcinoma treatment, Discrete Contin. Dyn. Syst. Ser. B, 18, 915-943 (2013) · Zbl 1301.92036
[27] de Pillis, L. G.; Renee Fister, K.; Gu, W.; Collins, C.; Daub, M.; Gross, D.; Moore, J.; Preskill, B., Mathematical model creation for cancer chemo-immunotherapy, Comput. Math. Methods Med., 10, 165-184 (2009) · Zbl 1312.92026
[28] Deisboeck, T. S.; Wang, Z.; Macklin, P.; Cristini, V., Multiscale cancer modeling, Annu. Rev. Biomed. Eng., 13, 127-155 (2011)
[29] den Breems, N. Y.; Eftimie, R., The re-polarisation of M2 and M1 macrophages and its role on cancer outcomes, J. Theor. Biol., 390, 23-39 (2016) · Zbl 1343.92254
[30] Deng, L.; Liang, H.; Burnette, B.; Beckett, M.; Darga, T.; Weichselbaum, R. R.; Fu, Y. X., Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice, J. Clin. Invest, 124, 687-695 (2014)
[31] Dong, Y.; Miyazaki, R.; Takeuchi, Y., Mathematical modeling on helper T cells in a tumor immune system, Discrete Contin. Dyn. Syst. Ser. B, 19, 55-72 (2014) · Zbl 1309.92043
[32] Dunn, G. P.; Old, L. J.; Schreiber, R. D., The immunobiology of cancer immunosurveillance and immunoediting, Immunity, 21, 137-148 (2004)
[33] Edelman, L. B.; Eddy, J. A.; Price, N. D., In silico models of cancer, Wiley Interdiscip. Rev. Syst. Biol. Med., 2, 438-459 (2010)
[34] Eftimie, R.; Bramson, J. L.; Earn, D. J., Interactions between the immune system and cancer: a brief review of non-spatial mathematical models, Bull. Math. Biol., 73, 2-32 (2011) · Zbl 1209.92028
[35] El-Gohary, A., Chaos and optimal control of cancer selfremission and tumor system steady states, Chaos Solitons Fractals, 37, 1305-1316 (2008) · Zbl 1142.92327
[36] Elishmereni, M.; Kheifetz, Y.; Søndergaard, H.; Overgaard, R. V.; Agur, Z., An integrated disease/pharmacokinetic/pharmacodynamic model suggests improved interleukin-21 regimens validated prospectively for mouse solid cancers, PLoS Comput. Biol., 7, Article e1002206 pp. (2011)
[37] Enderling, H.; Chaplain, M. A., Mathematical modeling of tumor growth and treatment, Curr. Pharm. Des., 20, 4934-4940 (2014)
[38] Engelhardt, J. J.; Boldajipour, B.; Beemiller, P.; Pandurangi, P.; Sorensen, C.; Werb, Z.; Egeblad, M.; Krummel, M. F., Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells, Cancer Cell, 21, 402-417 (2012)
[39] Figueredo, G. P.; Siebers, P. O.; Aickelin, U., Investigating mathematical models of immuno-interactions with early-stage cancer under an agent-based modelling perspective, BMC Bioinform., 14, Suppl 6, S6 (2013)
[40] Frascoli, F.; Kim, P. S.; Hughes, B. D.; Landman, K. A., A dynamical model of tumour immunotherapy, Math. Biosci., 253, 50-62 (2014) · Zbl 1287.92008
[41] Fremd, C.; Schuetz, F.; Sohn, C.; Beckhove, P.; Domschke, C., B cell-regulated immune responses in tumor models and cancer patients, OncoImmunology, 2, e25443 (2013)
[42] Frieboes, H. B.; Chaplain, M. A.; Thompson, A. M.; Bearer, E. L.; Lowengrub, J. S.; Cristini, V., Physical oncology: a bench-to-bedside quantitative and predictive approach, Cancer Res., 71, 298-302 (2011)
[43] Gatenby, R. A., Models of tumor-host interaction as competing populations: implications for tumor biology and treatment, J. Theor. Biol., 176, 447-455 (1995)
[44] Grapov, D.; Fahrmann, J.; Wanichthanarak, K.; Khoomrung, S., Rise of deep learning for genomic, proteomic, and metabolomic data integration in precision medicine, OMICS, 22, 630-636 (2018)
[45] Guillerey, C.; Huntington, N. D.; Smyth, M. J., Targeting natural killer cells in cancer immunotherapy, Nat. Immunol., 17, 1025-1036 (2016)
[46] Guo, C.; Buranych, A.; Sarkar, D.; Fisher, P. B.; Wang, X. Y., The role of tumor-associated macrophages in tumor vascularization, Vasc. Cell, 5, 20 (2013)
[47] Guo, C.; Buranych, A.; Sarkar, D.; Fisher, P. B.; Wang, X. Y., Correction: the role of tumor-associated macrophages in tumor vascularization, Vasc. Cell, 6, 2 (2014)
[48] Gurcan, F.; Kartal, S.; Ozturk, I.; Bozkurt, F., Stability and bifurcation analysis of a mathematical model for tumor-immune interaction with piecewise constant arguments of delay, Chaos Solitons Fractals, 68, 169-179 (2014) · Zbl 1354.92037
[49] Harris, T. H.; Banigan, E. J.; Christian, D. A.; Konradt, C.; Tait Wojno, E. D.; Norose, K.; Wilson, E. H.; John, B.; Weninger, W.; Luster, A. D.; Liu, A. J.; Hunter, C. A., Generalized Levy walks and the role of chemokines in migration of effector CD8+ T cells, Nature, 486, 545-548 (2012)
[50] Hatzikirou, H.; Chauviere, A.; Bauer, A. L.; Leier, A.; Lewis, M. T.; Macklin, P.; Marquez-Lago, T. T.; Bearer, E. L.; Cristini, V., Integrative physical oncology, Wiley Interdiscip. Rev. Syst. Biol. Med., 4, 1-14 (2012)
[51] Hiramoto, R. N.; Ghanta, V. K., Chemotherapy and rate of kill of tumor cells in a mouse plasmacytoma, Cancer Res., 34, 1738-1742 (1974)
[52] Hoffman, F.; Gavaghan, D.; Osborne, J.; Barrett, I. P.; You, T.; Ghadially, H.; Sainson, R.; Wilkinson, R. W.; Byrne, H. M., A mathematical model of antibody-dependent cellular cytotoxicity (ADCC), J. Theor. Biol., 436, 39-50 (2018) · Zbl 1394.92058
[53] Itik, M.; Banks, S. P., Chaos in a three-dimensional cancer model, Int. J. Bifurcat. Chaos, 20, 71-79 (2010) · Zbl 1183.34064
[54] Italiani, P.; Boraschi, D., From Monocytes to M1/M2 Macrophages: phenotypical vs. Functional differentiation, Front. Immunol., 5, 514 (2014)
[55] Kakimi, K.; Karasaki, T.; Matsushita, H.; Sugie, T., Advances in personalized cancer immunotherapy, Breast Cancer, 24, 16-24 (2017)
[56] Kareva, I.; Waxman, D. J.; Klement, G. L., Metronomic chemotherapy: an attractive alternative to maximum tolerated dose therapy that can activate anti-tumor immunity and minimize therapeutic resistance, Cancer Lett., 358, 100-106 (2015)
[57] Kaur, G.; Ahmad, N., On Study of immune response to tumor cells in prey-predator system, Int. Sch. Res. Not., 8 (2014), 2014
[58] Khajanchi, S.; Banerjee, S., Stability and bifurcation analysis of delay induced tumor immune interaction model, Appl. Math. Comput., 248, 652-671 (2014) · Zbl 1338.92048
[59] Kiran, K. L.; Lakshminarayanan, S., Optimization of chemotherapy and immunotherapy: in silico analysis using pharmacokinetic-pharmacodynamic and tumor growth models, J. Process. Control, 23, 396-403 (2013)
[60] Kirschner, D.; Panetta, J. C., Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol., 37, 235-252 (1998) · Zbl 0902.92012
[61] Kolev, M.; Kozłowska, E.; Lachowicz, M., A mathematical model for single cell cancer—Immune system dynamics, Math. Comput. Modell., 41, 1083-1095 (2005) · Zbl 1085.92019
[62] Kondelkova, K.; Vokurkova, D.; Krejsek, J.; Borska, L.; Fiala, Z.; Ctirad, A., Regulatory T cells (TREG) and their roles in immune system with respect to immunopathological disorders, Acta Medica. (Hradec. Kralove), 53, 73-77 (2010)
[63] Kreeger, P. K.; Lauffenburger, D. A., Cancer systems biology: a network modeling perspective, Carcinogenesis, 31, 2-8 (2010)
[64] Kuznetsov, V. A.; Makalkin, I. A.; Taylor, M. A.; Perelson, A. S., Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56, 295-321 (1994) · Zbl 0789.92019
[65] Lan, C.; Huang, X.; Lin, S.; Huang, H.; Cai, Q.; Wan, T.; Lu, J.; Liu, J., Expression of M2-polarized macrophages is associated with poor prognosis for advanced epithelial ovarian cancer, Technol. Cancer Res. Treat., 12, 259-267 (2013)
[66] Laoui, D.; Movahedi, K.; Van Overmeire, E.; Van den Bossche, J.; Schouppe, E.; Mommer, C.; Nikolaou, A.; Morias, Y.; De Baetselier, P.; Van Ginderachter, J. A., Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions, Int. J. Dev. Biol., 55, 861-867 (2011)
[67] Lee, T. H.; Cho, Y. H.; Lee, M. G., Larger numbers of immature dendritic cells augment an anti-tumor effect against established murine melanoma cells, Biotechnol. Lett., 29, 351-357 (2007)
[68] Leonard, F.; Curtis, L. T.; Ware, M. J.; Nosrat, T.; Liu, X.; Yokoi, K.; Frieboes, H. B.; Godin, B., Macrophage polarization contributes to the anti-tumoral efficacy of mesoporous nanovectors loaded with albumin-bound paclitaxel, Front. Immunol., 8, 693 (2017)
[69] Leonard, F.; Curtis, L. T.; Yesantharao, P.; Tanei, T.; Alexander, J. F.; Wu, M.; Lowengrub, J.; Liu, X.; Ferrari, M.; Yokoi, K.; Frieboes, H. B.; Godin, B., Enhanced performance of macrophage-encapsulated nanoparticle albumin-bound-paclitaxel in hypo-perfused cancer lesions, Nanoscale, 8, 12544-12552 (2016)
[70] Letellier, C.; Denis, F.; Aguirre, L. A., What can be learned from a chaotic cancer model?, J. Theor. Biol., 322, 7-16 (2013) · Zbl 1406.92313
[71] López, Á. G.; Seoane, J. M.; Sanjuán, M. A., A validated mathematical model of tumor growth including tumor-host interaction, cell-mediated immune response and chemotherapy, Bull. Math. Biol., 76, 2884-2906 (2014) · Zbl 1329.92075
[72] Ludewig, B.; Krebs, P.; Junt, T.; Metters, H.; Ford, N. J.; Anderson, R. M.; Bocharov, G., Determining control parameters for dendritic cell-cytotoxic T lymphocyte interaction, Eur. J. Immunol., 34, 2407-2418 (2004)
[73] Macfarlane, F. R.; Lorenzi, T.; Chaplain, M. A.J., Modelling the immune response to cancer: an individual-based approach accounting for the difference in movement between inactive and activated T cells, B. Math. Biol., 80, 1539-1562 (2018) · Zbl 1396.92037
[74] Macklin, P.; McDougall, S.; Anderson, A. R.A.; Chaplain, M. A.J.; Cristini, V.; Lowengrub, J., Multiscale modelling and nonlinear simulation of vascular tumour growth, J. Math. Biol., 58, 765-798 (2009) · Zbl 1311.92040
[75] Mahasa, K. J.; Ouifki, R.; Eladdadi, A.; de Pillis, L., Mathematical model of tumor-immune surveillance, J. Theor. Biol., 404, 312-330 (2016) · Zbl 1343.92281
[76] Maher, J.; Davies, E. T., Targeting cytotoxic T lymphocytes for cancer immunotherapy, Br. J. Cancer, 91, 817-821 (2004)
[77] Mahlbacher, G.; Curtis, L. T.; Lowengrub, J.; Frieboes, H. B., Mathematical modeling of tumor-associated macrophage interactions with the cancer microenvironment, J. Immunother. Cancer, 6, 10 (2018)
[78] Markov, O. V.; Mironova, N. L.; Vlasov, V. V.; Zenkova, M. A., Molecular and cellular mechanisms of antitumor immune response activation by dendritic cells, Acta Naturae, 8, 17-30 (2016)
[79] Marusyk, A.; Polyak, K., Tumor heterogeneity: causes and consequences, Biochim. Biophys. Acta, 1805, 105 (2010)
[80] Matzavinos, A.; Chaplain, M. A.; Kuznetsov, V. A., Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour, Math. Med. Biol., 21, 1-34 (2004) · Zbl 1061.92038
[81] McDougall, S. R.; Anderson, A. R.A.; Chaplain, M. A.J., Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies, J. Theor. Biol., 241, 564-589 (2006) · Zbl 1447.92096
[82] Michor, T.; Liphardt, J.; Ferrari, M.; Widom, J., What does physics have to do with cancer?, Nat. Rev. Cancer, 11, 657-670 (2011)
[83] Mittal, D.; Gubin, M. M.; Schreiber, R. D.; Smyth, M. J., New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape, Curr. Opin. Immunol., 27, 16-25 (2014)
[84] Moghtadaei, M.; Hashemi Golpayegani, M. R.; Malekzadeh, R., Periodic and chaotic dynamics in a map-based model of tumor-immune interaction, J. Theor. Biol., 334, 130-140 (2013) · Zbl 1397.92350
[85] Nicholson, L. B., The immune system, Essays Biochem., 60, 275-301 (2016)
[86] Nielsen, S. R.; Schmid, M. C., Macrophages as key drivers of cancer progression and metastasis, Mediat. Inflamm., 11 (2017), 2017
[87] Norton, K. A.; Jin, K.; Popel, A. S., Modeling triple-negative breast cancer heterogeneity: effects of stromal macrophages, fibroblasts and tumor vasculature, J. Theor. Biol., 452, 56-68 (2018)
[88] Norton, K. A.; Gong, C.; Jamalian, S.; Popel, A. S., Multiscale agent-based and hybrid modeling of the tumor immune microenvironment, Processes (Basel), 7 (2019)
[89] Nwabugwu, C. I.; Rakhra, K.; Felsher, D. W.; Paik, D. S., A tumor-immune mathematical model of CD4+ T helper cell dependent tumor regression by oncogene inactivation, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2013, 4529-4532 (2013)
[90] Osborne, J. M.; Walter, A.; Kershaw, S. K.; Mirams, G. R.; Fletcher, A. G.; Pathmanathan, P.; Gavaghan, D.; Jensen, O. E.; Maini, P. K.; Byrne, H. M., A hybrid approach to multi-scale modelling of cancer, Philos. Trans. A Math. Phys. Eng. Sci., 368, 5013-5028 (2010) · Zbl 1211.37113
[91] Owen, M. R.; Sherratt, J. A., Modelling the macrophage invasion of turnours: effects on growth and composition, IMA J. Math. Appl. Med., 15, 165-185 (1998) · Zbl 0909.92022
[92] Owen, M. R.; Sherratt, J. A., Mathematical modelling of macrophage dynamics in tumours, Math. Mod. Meth. Appl. S., 9, 513-539 (1999) · Zbl 0932.92019
[93] Owen, M. R.; Byrne, H. M.; Lewis, C. E., Mathematical modelling of the use of macrophages as vehicles for drug delivery to hypoxic tumour sites, J. Theor. Biol., 226, 377-391 (2004), doi:DOI 10.1016/j.jtbi.2003.09.004 · Zbl 1439.92111
[94] Owen, M. R.; Alarcon, T.; Maini, P. K.; Byrne, H. M., Angiogenesis and vascular remodelling in normal and cancerous tissues, J. Math. Biol., 58, 689-721 (2009) · Zbl 1311.92034
[95] Owen, M. R.; Stamper, I. J.; Muthana, M.; Richardson, G. W.; Dobson, J.; Lewis, C. E.; Byrne, H. M., Mathematical Modeling predicts synergistic antitumor effects of combining a macrophage-based, hypoxia-targeted gene therapy with chemotherapy, Cancer Res., 71, 2826-2837 (2011)
[96] Palladini, A.; Nicoletti, G.; Pappalardo, F.; Murgo, A.; Grosso, V.; Stivani, V.; Ianzano, M. L.; Antognoli, A.; Croci, S.; Landuzzi, L.; De Giovanni, C.; Nanni, P.; Motta, S.; Lollini, P. L., In silico modeling and in vivo efficacy of cancer-preventive vaccinations, Cancer Res., 70, 7755-7763 (2010)
[97] Pappalardo, F.; Forero, I. M.; Pennisi, M.; Palazon, A.; Melero, I.; Motta, S., SimB16: modeling Induced Immune System Response against B16-Melanoma, PLoS One, 6, e26523 (2011)
[98] Pourhasanzade, F.; Sabzpoushan, S.; Alizadeh, A. M.; Esmati, E., An agent-based model of avascular tumor growth: immune response tendency to prevent cancer development, Simulation, 93, 641-657 (2017)
[99] Ramos, R.; Zapata, J.; Condat, C.; Deisboeck, T. S., Modeling cancer immunotherapy: assessing the effects of lymphocytes on cancer cell growth and motility, Physica A, 392, 2415-2425 (2013) · Zbl 1395.35183
[100] Rejniak, K. A.; McCawley, L. J., Current trends in mathematical modeling of tumor-microenvironment interactions: a survey of tools and applications, Exp. Biol. Med. (Maywood), 235, 411-423 (2010)
[101] Rejniak, K. A.; Anderson, A. R.A., Hybrid models of tumor growth. Wiley interdisciplinary reviews, Syst. Biol. Med., 3, 115-125 (2011)
[102] Robertson-Tessi, M.; El-Kareh, A.; Goriely, A., A mathematical model of tumor-immune interactions, J. Theor. Biol., 294, 56-73 (2012) · Zbl 1397.92358
[103] Robertson-Tessi, M.; El-Kareh, A.; Goriely, A., A model for effects of adaptive immunity on tumor response to chemotherapy and chemoimmunotherapy, J. Theor. Biol., 380, 569-584 (2015) · Zbl 1343.92243
[104] Roca, H.; Varsos, Z. S.; Sud, S.; Craig, M. J.; Ying, C.; Pienta, K. J., CCL2 and Interleukin-6 promote survival of human CD11b(+) peripheral blood mononuclear cells and induce M2-type macrophage polarization, J. Biol. Chem., 284, 34342-34354 (2009)
[105] Rocha, A. M.A.; Costa, M. F.P.; Fernandes, E. M., On a multiobjective optimal control of a tumor growth model with immune response and drug therapies, Int. Trans. Oper. Res., 25, 269-294 (2018) · Zbl 1382.90100
[106] Rozova, V.; Bratus, A., Therapy strategy in tumour cells and immune system interaction mathematical model, Appl. Anal., 95, 1548-1559 (2016) · Zbl 1350.37081
[107] Schaaf, M. B.; Garg, A. D.; Agostinis, P., Defining the role of the tumor vasculature in antitumor immunity and immunotherapy, Cell Death Dis., 9, 115 (2018)
[108] Serre, R.; Benzekry, S.; Padovani, L.; MEILLE, C.; Andre, N.; Ciccolini, J.; Barlesi, F.; Muracciole, X.; Barbolosi, D., Mathematical modeling of cancer immunotherapy and its synergy with radiotherapy, Cancer Res. (2016)
[109] Singh, S.; Sharma, P.; Singh, P., Stability of tumor growth under immunotherapy: a computational study, Biophys. Rev. Lett., 12, 69-85 (2017)
[110] Squadrito, M. L.; De Palma, M., Macrophage regulation of tumor angiogenesis: implications for cancer therapy, Mol. Aspects Med., 32, 123-145 (2011)
[111] Sun, Y.; Campisi, J.; Higano, C.; Beer, T. M.; Porter, P.; Coleman, I.; True, L.; Nelson, P. S., Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B, Nat. Med., 18, 1359-1368 (2012)
[112] Szymańska, Z.; Cytowski, M.; Mitchell, E.; Macnamara, C. K.; Chaplain, M. A., Computational modelling of cancer development and growth: modelling at multiple scales and multiscale modelling, Bull. Math. Biol., 80, 1366-1403 (2018) · Zbl 1394.92065
[113] Tripathi, C.; Tewari, B. N.; Kanchan, R. K.; Baghel, K. S.; Nautiyal, N.; Shrivastava, R.; Kaur, H.; Bhatt, M. L.; Bhadauria, S., Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic M2-polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin, Oncotarget, 5, 5350-5368 (2014)
[114] Vineis, P.; Schatzkin, A.; Potter, J. D., Models of carcinogenesis: an overview, Carcinogenesis, 31, 1703-1709 (2010)
[115] Wang, Z.; Butner, J. D.; Cristini, V.; Deisboeck, T. S., Integrated PK-PD and agent-based modeling in oncology, J. Pharmacokinet. Pharmacodyn., 42, 179-189 (2015)
[116] Wang, Z.; Butner, J. D.; Kerketta, R.; Cristini, V.; Deisboeck, T. S., Simulating cancer growth with multiscale agent-based modeling, Semin. Cancer Biol., 30, 70-78 (2015)
[117] Webb, S. D.; Owen, M. R.; Byrne, H. M.; Murdoch, C.; Lewis, C. E., Macrophage-based anti-cancer therapy: modelling different modes of tumour targeting, Bull. Math. Biol., 69, 1747-1776 (2007) · Zbl 1298.92054
[118] Wilkie, K.; Hahnfeldt, P.; Hlatky, L., Using ordinary differential equations to explore cancer-immune dynamics and tumor dormancy, bioRxiv, Article 049874 pp. (2016)
[119] Wilkie, K. P.; Hahnfeldt, P., Mathematical models of immune-induced cancer dormancy and the emergence of immune evasion, Interface Focus, 3, Article 20130010 pp. (2013)
[120] Wilkie, K. P.; Hahnfeldt, P., Modeling the dichotomy of the immune response to cancer: cytotoxic effects and tumor-promoting inflammation, Bull. Math. Biol., 79, 1426-1448 (2017) · Zbl 1372.92047
[121] Wu, M.; Frieboes, H. B.; McDougall, S. R.; Chaplain, M. A.J.; Cristini, V.; Lowengrub, J., The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems, J. Theor. Biol., 320, 131-151 (2013) · Zbl 1406.92330
[122] Yao, R.-R.; Li, J.-H.; Zhang, R.; Chen, R.-X.; Wang, Y.-H., M2-polarized tumor-associated macrophages facilitated migration and epithelial-mesenchymal transition of HCC cells via the TLR4/STAT3 signaling pathway, World J. Surg. Oncol., 16, 9 (2018)
[123] Yuan, A.; Hsiao, Y.-J.; Chen, H.-Y.; Chen, H.-W.; Ho, C.-C.; Chen, Y.-Y.; Liu, Y.-C.; Hong, T.-H.; Yu, S.-L.; Chen, J. J.W.; Yang, P.-C., Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression, Sci. Rep., 5, 14273 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.