×

Modelling the immune response to cancer: an individual-based approach accounting for the difference in movement between inactive and activated T cells. (English) Zbl 1396.92037

Summary: A growing body of experimental evidence indicates that immune cells move in an unrestricted search pattern if they are in the pre-activated state, whilst they tend to stay within a more restricted area upon activation induced by the presence of tumour antigens. This change in movement is not often considered in the existing mathematical models of the interactions between immune cells and cancer cells. With the aim to fill such a gap in the existing literature, in this work we present a spatially structured individual-based model of tumour-immune competition that takes explicitly into account the difference in movement between inactive and activated immune cells. In our model, a Lévy walk is used to capture the movement of inactive immune cells, whereas Brownian motion is used to describe the movement of antigen-activated immune cells. The effects of activation of immune cells, the proliferation of cancer cells and the immune destruction of cancer cells are also modelled. We illustrate the ability of our model to reproduce qualitatively the spatial trajectories of immune cells observed in experimental data of single-cell tracking. Computational simulations of our model further clarify the conditions for the onset of a successful immune action against cancer cells and may suggest possible targets to improve the efficacy of cancer immunotherapy. Overall, our theoretical work highlights the importance of taking into account spatial interactions when modelling the immune response to cancer cells.

MSC:

92C50 Medical applications (general)
60J20 Applications of Markov chains and discrete-time Markov processes on general state spaces (social mobility, learning theory, industrial processes, etc.)
60G51 Processes with independent increments; Lévy processes
92C17 Cell movement (chemotaxis, etc.)

References:

[1] Ahmed, MD; Bae, YS; etal., Dendritic cell-based therapeutic cancer vaccines: past, present and future, Clin Exp Vaccine Res, 3, 113-116, (2014) · doi:10.7774/cevr.2014.3.2.113
[2] Al-Tameemi, M; Chaplain, MAJ; d’Onofrio, A, Evasion of tumours from the control of the immune system: consequences of brief encounters, Biol Direct, 7, 31-31, (2012) · doi:10.1186/1745-6150-7-31
[3] Andersen, R; Donia, M; Ellebaek, E; Borch, TH; Kongsted, P; Iversen, TZ; etal., Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated IL-2 regimen, Clin Cancer Res, 22, 3734-3745, (2016) · doi:10.1158/1078-0432.CCR-15-1879
[4] Ariel, G; Rabani, A; Benisty, S; Partridge, JD; Harshey, RM; Be’Er, A, Swarming bacteria migrate by Lévy walk, Nat Commun, 6, 8396, (2015) · doi:10.1038/ncomms9396
[5] Bartumeus, F; Raposo, EP; Viswanathan, GM; Luz, MGE, Stochastic optimal foraging: tuning insensitive and extensive dynamics in random searches, PLoS ONE, 9, e106,373, (2014) · doi:10.1371/journal.pone.0106373
[6] Basu, R; Whitlock, BM; Husson, J; Floch, A; Jin, W; Oyler-Yaniv, A; Dotiwala, F; Giannone, G; Hivroz, C; Biais, N; etal., Cytotoxic T cells use mechanical force to potentiate target cell Killing, Cell, 165, 100-110, (2016) · doi:10.1016/j.cell.2016.01.021
[7] Bellomo, N; Delitala, M, From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells, Phys Life Rev, 5, 183-206, (2008) · doi:10.1016/j.plrev.2008.07.001
[8] Bianca, C; Chiacchio, F; Pappalardo, F; Pennisi, M, Mathematical modeling of the immune system recognition to mammary carcinoma antigen, BMC Bioinform, 13, s21, (2012) · doi:10.1186/1471-2105-13-S17-S21
[9] Boissonnas, A; Fetler, L; Zeelenberg, IS; Hugues, S; Amigorena, S, In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor, J Exp Med, 204, 345-356, (2007) · doi:10.1084/jem.20061890
[10] Bunimovich-Mendrazitsky, S; Byrne, H; Stone, L, Mathematical model of pulsed immunotherapy for superficial bladder cancer, Bull Math Biol, 70, 2055-2076, (2008) · Zbl 1147.92013 · doi:10.1007/s11538-008-9344-z
[11] Butterfield, LH, Dendritic cells in cancer immunotherapy clinical trials: are we making progress?, Front Immunol, 4, 454, (2013) · doi:10.3389/fimmu.2013.00454
[12] Carreno, BM; Magrini, V; Becker-Hapak, M; Kaabinejadian, S; Hundal, J; Petti, AA; Ly, A; Lie, WR; Hildebrand, WH; Mardis, ER; etal., A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells, Science, 348, 803-808, (2015) · doi:10.1126/science.aaa3828
[13] Casal, A; Sumen, C; Reddy, TE; Alber, MS; Lee, PP, Agent-based modeling of the context dependency in T cell recognition, J Theor Biol, 236, 376-391, (2005) · Zbl 1442.92028 · doi:10.1016/j.jtbi.2005.03.019
[14] Cattani, C; Ciancio, A; d’Onofrio, A, Metamodeling the learning-hiding competition between tumours and the immune system: a kinematic approach, Math Comput Model, 52, 62-69, (2010) · Zbl 1201.34071 · doi:10.1016/j.mcm.2010.01.012
[15] Celli, S; Day, M; Müller, AJ; Molina-Paris, C; Lythe, G; Bousso, P, How many dendritic cells are required to initiate a T-cell response?, Blood, 120, 3945-3948, (2012) · doi:10.1182/blood-2012-01-408260
[16] Chowdhury, D; Sahimi, M; Stauffer, D, A discrete model for immune surveillance, tumor immunity and cancer, J Theor Biol, 152, 263-270, (1991) · doi:10.1016/S0022-5193(05)80457-6
[17] Christophe, C; Müller, S; Rodrigues, M; Petit, AE; Cattiaux, P; Dupré, L; Gadat, S; Valitutti, S, A biased competition theory of cytotoxic T lymphocyte interaction with tumor nodules, PLoS ONE, 10, e0120,053, (2015) · doi:10.1371/journal.pone.0120053
[18] Pillis, LG; Mallet, DG; Radunskaya, AE, Spatial tumor-immune modeling, Comput Math Meth Med, 7, 159-176, (2006) · Zbl 1111.92036 · doi:10.1080/10273660600968978
[19] Delitala, M; Lorenzi, T, Recognition and learning in a mathematical model for immune response against cancer, Discrete Contin Dyn Syst Ser B, 18, 891-914, (2013) · Zbl 1277.92012 · doi:10.3934/dcdsb.2013.18.891
[20] Detcheverry, F, Generalized run-and-turn motions: from bacteria to Lévy walks, Phys Rev E, 96, 012,415, (2017) · doi:10.1103/PhysRevE.96.012415
[21] d’Onofrio, A; Ciancio, A, Simple biophysical model of tumor evasion from immune system control, Phys Rev E, 84, 031,910, (2011) · doi:10.1103/PhysRevE.84.031910
[22] Engelhardt, JJ; Boldajipour, B; Beemiller, P; Pandurangi, P; Sorensen, C; Werb, Z; Egeblad, M; Krummel, MF, Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells, Cancer Cell, 21, 402-417, (2012) · doi:10.1016/j.ccr.2012.01.008
[23] Frascoli, F; Kim, PS; Hughes, BD; Landman, KA, A dynamical model of tumour immunotherapy, Math Biosci, 253, 50-62, (2014) · Zbl 1287.92008 · doi:10.1016/j.mbs.2014.04.003
[24] Fricke, GM; Letendre, KA; Moses, ME; Cannon, JL, Persistence and adaptation in immunity; T cells balance the extent and thoroughness of search, PLoS Comput Biol, 12, e1004818, (2016) · doi:10.1371/journal.pcbi.1004818
[25] Frigault, MJ; Maus, MV, Chimeric antigen receptor-modified T cells strike back, Int Immunol, (2016) · doi:10.1093/intimm/dxw018
[26] Garg, AD; Coulie, PG; Eynde, BJ; Agostinis, P, Integrating next-generation dendritic cell vaccines into the current cancer immunotherapy landscape, Trends Immunol, 1392, 1-17, (2017)
[27] Garrido, F; Cabrera, T; Aptsiauri, N, Hard and soft lesions underlying the HLA class I alterations in cancer cells: implications for immunotherapy, Int J Cancer, 127, 249-256, (2010)
[28] Goya, GF; Marcos-Campos, I; Fernandez-Pacheco, R; Saez, B; Godino, J; Asin, L; Lambea, J; Tabuenca, P; Mayordomo, JI; Larrad, L; etal., Dendritic cell uptake of iron-based magnetic nanoparticles, Cell Biol Int, 32, 1001-1005, (2008) · doi:10.1016/j.cellbi.2008.04.001
[29] Gross, G; Eshhar, Z, Therapeutic potential of T cell chimeric antigen receptors (CARs) in cancer treatment: counteracting off-tumor toxicities for safe CAR T cell therapy, Annu Rev Pharmacol Toxicol, 56, 59-83, (2016) · doi:10.1146/annurev-pharmtox-010814-124844
[30] Halle, S; Keyser, KA; Stahl, FR; Busche, A; Marquardt, A; Zheng, X; Galla, M; Heissmeyer, V; Heller, K; Boelter, J; etal., In vivo Killing capacity of cytotoxic T cells is limited and involves dynamic interactions and T cell cooperativity, Immunity, 44, 233-245, (2016) · doi:10.1016/j.immuni.2016.01.010
[31] Hanahan, D; Weinberg, RA, Hallmarks of cancer: the next generation, Cell, 144, 646-674, (2011) · doi:10.1016/j.cell.2011.02.013
[32] Harris, TH; Banigan, EJ; Christian, DA; Konradt, C; Wojno, EDT; Norose, K; Wilson, EH; John, B; Weninger, W; Luster, AD; etal., Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells, Nature, 486, 545-548, (2012) · doi:10.1038/nature11098
[33] Hersey, P; Zhang, X, How melanoma cells evade trail-induced apoptosis, Nat Rev Cancer, 1, 142-150, (2001) · doi:10.1038/35101078
[34] Hu, WY; Zhong, WR; Wang, FH; Li, L; Shao, YZ, In silico synergism and antagonism of an anti-tumour system intervened by coupling immunotherapy and chemotherapy: a mathematical modelling approach, Bull Math Biol, 74, 434-452, (2012) · Zbl 1402.92240 · doi:10.1007/s11538-011-9693-x
[35] Ikeda, H, T-cell adoptive immunotherapy using tumor-infiltrating T cells and genetically engineered TCR-T cells, Int Immunol, (2016) · doi:10.1093/intimm/dxw022
[36] Joshi, B; Wang, X; Banerjee, S; Tian, H; Matzavinos, A; Chaplain, MAJ, On immunotherapies and cancer vaccination protocols: a mathematical modelling approach, J Theor Biol, 259, 820-827, (2009) · Zbl 1402.92244 · doi:10.1016/j.jtbi.2009.05.001
[37] Kolev, M, Mathematical modeling of the competition between acquired immunity and cancer, Int J of Appl Math Comput Sci, 13, 289-296, (2003) · Zbl 1035.92021
[38] Krummel, MF; Bartumeus, F; Gérard, A, T-cell migration, search strategies and mechanisms, Nat Rev Immunol, 16, 193-201, (2016) · doi:10.1038/nri.2015.16
[39] Kuznetsov, VA; Knott, GD, Modeling tumor regrowth and immunotherapy, Math Comput Model, 33, 1275-1287, (2001) · Zbl 1004.92021 · doi:10.1016/S0895-7177(00)00314-9
[40] Kuznetsov, VA; Makalkin, IA; Taylor, MA; Perelson, AS, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bull Math Biol, 56, 295-321, (1994) · Zbl 0789.92019 · doi:10.1007/BF02460644
[41] Li, X; Yang, A; Huang, H; Zhang, X; Town, J; Davis, B; Cockcroft, DW; Gordon, JR, Induction of type 2 T helper cell allergen tolerance by IL-10-differentiated regulatory dendritic cells, Am J Respir Cell Mol Biol, 42, 190-199, (2010) · doi:10.1165/rcmb.2009-0023OC
[42] Lim, DS; Kim, JH; Lee, DS; Yoon, CH; Bae, YS, DC immunotherapy is highly effective for the inhibition of tumor metastasis or recurrence, although it is not efficient for the eradication of established solid tumors, Cancer Immunol Immunother, 56, 1817-1829, (2007) · doi:10.1007/s00262-007-0325-0
[43] Lin Erickson, AH; Wise, A; Fleming, S; Baird, M; Lateef, Z; Molinaro, A; Teboh-Ewungkem, M; Pillis, LG, A preliminary mathematical model of skin dendritic cell trafficking and induction of T cell immunity, Discrete Contin Dyn Syst Ser B, 12, 323-336, (2009) · Zbl 1169.92025 · doi:10.3934/dcdsb.2009.12.323
[44] Lorenzi, T; Chisholm, RH; Melensi, M; Lorz, A; Delitala, M, Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion, Immunology, 146, 271-280, (2015) · doi:10.1111/imm.12500
[45] Matzavinos, A; Chaplain, MAJ; Kuznetsov, VA, Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour, Math Med Biol, 21, 1-34, (2004) · Zbl 1061.92038 · doi:10.1093/imammb/21.1.1
[46] Messerschmidt, JL; Prendergast, GC; Messerschmidt, GL, How cancers escape immune destruction and mechanisms of action for the new significantly active immune therapies: helping non-immunologists decipher recent advances, Oncologist, 21, 233-243, (2016) · doi:10.1634/theoncologist.2015-0282
[47] Modiano, JF; Bellgrau, D, Fas ligand based immunotherapy: a potent and effective neoadjuvant with checkpoint inhibitor properties, or a systemically toxic promoter of tumor growth?, Discov Med, 21, 109-116, (2016)
[48] Pappalardo, F; Musumeci, S; Motta, S, Modeling immune system control of atherogenesis, Bioinformatics, 24, 1715-1721, (2008) · doi:10.1093/bioinformatics/btn306
[49] Pitt, JM; Marabelle, A; Eggermont, A; Soria, JC; Kroemer, G; Zitvogel, L, Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy, Ann Oncol, 8, 1482-1492, (2016) · doi:10.1093/annonc/mdw168
[50] Prue, RL; Vari, F; Radford, KJ; Tong, H; Hardy, MY; DRozario, R; Waterhouse, NJ; Rossetti, T; Coleman, R; Tracey, C; etal., A phase I clinical trial of CD1c (BDCA-1)+ dendritic cells pulsed with HLA-A* 0201 peptides for immunotherapy of metastatic hormone refractory prostate cancer, J Immunother, 38, 71-76, (2015) · doi:10.1097/CJI.0000000000000063
[51] Rozenberg G (2011) Microscopic haematology: a practical guide for the laboratory, chap B4: Lymphocytes, 3rd edn. Elsevier, Amsterdam, p 106
[52] Sato, T; Terai, M; Yasuda, R; Watanabe, R; Berd, D; Mastrangelo, MJ; Hasumi, K, Combination of monocyte-derived dendritic cells and activated T cells which express CD40 ligand: a new approach to cancer immunotherapy, Cancer Immunol Immunother, 53, 53-61, (2004) · doi:10.1007/s00262-003-0419-2
[53] Schreibelt, G; Bol, KF; Westdorp, H; Wimmers, F; Aarntzen, EHJG; Duiveman-de Boer, T; Rakt, MWMM; Scharenborg, NM; Boer, AJ; Pots, JM; etal., Effective clinical responses in metastatic melanoma patients after vaccination with primary myeloid dendritic cells, Clin Cancer Res, 22, 2155-2166, (2016) · doi:10.1158/1078-0432.CCR-15-2205
[54] Spranger, S, Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment, Int Immunol, (2016) · doi:10.1093/intimm/dxw014
[55] Stewart, TJ; Abrams, SI, How tumours escape mass destruction, Oncogene, 27, 5894-5903, (2008) · doi:10.1038/onc.2008.268
[56] Takayanagi, T; Ohuchi, A, A mathematical analysis of the interactions between immunogenic tumor cells and cytotoxic T lymphocytes, Microbiol Immunol, 45, 709-715, (2001) · doi:10.1111/j.1348-0421.2001.tb01305.x
[57] Tan, MP; Gerry, AB; Brewer, JE; Melchiori, L; Bridgeman, JS; Bennett, AD; Pumphrey, NJ; Jakobsen, BK; Price, DA; Ladell, K; etal., T cell receptor binding affinity governs the functional profile of cancer-specific CD8+ T cells, Clin Exp Immunol, 180, 255-270, (2015) · doi:10.1111/cei.12570
[58] Tel, J; Aarntzen, EHJG; Baba, T; Schreibelt, G; Schulte, BM; Benitez-Ribas, D; Boerman, OC; Croockewit, S; Oyen, WJG; Rossum, M; etal., Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients, Cancer Res, 73, 1063-1075, (2013) · doi:10.1158/0008-5472.CAN-12-2583
[59] Weinberg, RA; Weinberg, RA (ed.), Crowd control: tumour immunology and immunotherapy, 655-724, (2007), New York
[60] Weinberg, RA; Weinberg, RA (ed.), Moving out: invasion and metastasis, 587-654, (2007), New York
[61] Weninger, W; Biro, M; Jain, R, Leukocyte migration in the interstitial space of non-lymphoid organs, Nat Rev Immunol, 14, 232-246, (2014) · doi:10.1038/nri3641
[62] Wilgenhof, S; Nuffel, AMT; Corthals, J; Heirman, C; Tuyaerts, S; Benteyn, D; Coninck, A; Riet, I; Verfaillie, G; Vandeloo, J; etal., Therapeutic vaccination with an autologous mrna electroporated dendritic cell vaccine in patients with advanced melanoma, J Immunother, 34, 448-456, (2011) · doi:10.1097/CJI.0b013e31821dcb31
[63] Wilgenhof, S; Corthals, J; Heirman, C; Baren, N; Lucas, S; Kvistborg, P; Thielemans, K; Neyns, B, Phase II study of autologous monocyte-derived mrnaelectroporated dendritic cells (trimixdc-MEL) plus ipilimumab in patients with pretreated advanced melanoma, J Clin Oncol, 34, 1330-1338, (2016) · doi:10.1200/JCO.2015.63.4121
[64] Wilkie, KP; Hahnfeldt, P, Mathematical models of immune-induced cancer dormancy and the emergence of immune evasion, Interface Focus, 3, 20130010, (2013) · doi:10.1098/rsfs.2013.0010
[65] Wolf, K; Müller, R; Borgmann, S; Bröcker, EB; Friedl, P, Amoeboid shape change and contact guidance: T-lymphocyte crawling through firbrillar collagen is independent of matrix remodelling by MMPs and other proteases, Blood, 102, 3262-3269, (2003) · doi:10.1182/blood-2002-12-3791
[66] Wosniack, MA; Santos, MC; Raposo, EP; Viswanathan, GM; Luz, MGE, The evolutionary origins of Lévy walk foraging, PLoS Comput Biol, 13, e1005,774, (2017) · doi:10.1371/journal.pcbi.1005774
[67] Yarchoan, M; Johnson, BA; Lutz, ER; Laheru, DA; Jaffee, EM, Targeting neoantigens to augment antitumour immunity, Nat Rev Cancer, 17, 209-222, (2017) · doi:10.1038/nrc.2016.154
[68] Ye, Q; Loisiou, M; Levine, BL; Suhoski, MM; Riley, JL; June, CH; Coukos, G; Powell, DJ, Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes, J Transl Med, 9, 131, (2011) · doi:10.1186/1479-5876-9-131
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.