×

Modeling cancer immunotherapy: assessing the effects of lymphocytes on cancer cell growth and motility. (English) Zbl 1395.35183

Summary: A mesoscopic model is used to describe the effects of lymphocyte activity on a growing tumor. The model yields novel insights into the tumor-immune system interaction. In particular, we found that the presence of a putative chemotactic messenger that helps guide the lymphocytes towards the tumor is not critical to elicit the anti-tumor effects of the immune system, while lymphocytes that block tumor cell migration contribute to limit cancer expansion and thus have a more significant therapeutic impact.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
92C50 Medical applications (general)
82B31 Stochastic methods applied to problems in equilibrium statistical mechanics

References:

[1] Herr, H. W.; Morales, A., History of bacillus calmette-guerin and bladder cancer: an immunotherapy success story, J. Urol., 179, 53-56, (2008)
[2] Hodi, F. S., Improved survival with ipilimumab in patients with metastatic melanoma, N. Engl. J. Med., 363, 711-723, (2010)
[3] Kirschner, D.; Panetta, J. C., Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol., 37, 235-252, (1998) · Zbl 0902.92012
[4] Nani, F.; Freedman, H. I., A mathematical model of cancer treatment by immunotherapy, Math. Biosci., 163, 159-199, (2000) · Zbl 0997.92024
[5] Sotolongo-Costa, O.; Morales Molina, L.; Rodríguez Pérez, D.; Antoranz, J. C.; Chacón Reyes, M., Behavior of tumors under nonstationary therapy, Physica D, 178, 242-253, (2003) · Zbl 1011.92028
[6] De Vladar, H. P.; González, J. A., Dynamic response of cancer under the influence of immunological activity and therapy, J. Theoret. Biol., 227, 335-348, (2004) · Zbl 1439.92063
[7] D’Onofrio, A., A general framework for modeling tumor-immune system competition and immunotherapy: mathematical analysis and biomedical inferences, Physica D, 208, 220-235, (2005) · Zbl 1087.34028
[8] De Pillis, L. G.; Gu, W.; Radunskaya, A. E., Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations, J. Theoret. Biol., 238, 841-862, (2006) · Zbl 1445.92135
[9] Piccoli, B.; Castiglione, F., Optimal vaccine scheduling in cancer immunotherapy, Physica A, 370, 672-680, (2006)
[10] Cattani, C.; Ciancio, A., Qualitative analysis of second-order models of tumor-immune system competition, Math. Comp. Modelling, 47, 1339-1355, (2008) · Zbl 1145.34303
[11] De Pillis, L. G., Mathematical model creation for cancer chemo-immunotherapy, Comput. Math. Methods Med., 10, 165-184, (2009) · Zbl 1312.92026
[12] (Adam, J. A.; Bellomo, N., A Survey of Models for Tumor-Immune System Dynamics, (1997), Birkhäuser Boston) · Zbl 0874.92020
[13] (Deisboeck, T. S.; Stamatakos, G. S., Multiscale Cancer Modeling, (2011), Taylor & Francis Boca Raton) · Zbl 1321.92031
[14] Norris, E. S.; King, J. R.; Byrne, H. M., Modelling the response of spatially structured tumours to chemotherapy: drug kinetics, Math. Comp. Modelling, 43, 820-837, (2006) · Zbl 1130.92033
[15] Scalerandi, M.; Romano, A.; Pescarmona, G. P.; Delsanto, P. P.; Condat, C. A., Nutrient competition as a determinant for cancer growth, Phys. Rev. E, 59, 2206-2217, (1999)
[16] Kansal, A. R.; Torquato, S.; Harsh IV, G. R.; Chiocca, E. A.; Deisboeck, T. S., Simulated brain tumor growth dynamics using a three dimensional cellular automaton, J. Theoret. Biol., 203, 367-382, (2000)
[17] Ferreira, S. C.; Martins, M. L.; Vilela, M. J., Reaction-diffusion model for the growth of avascular tumor, Phys. Rev. E, 65, 021907, (2002), 1-8
[18] Scalerandi, M.; Capogrosso Sansone, B.; Benati, C.; Condat, C. A., Competition effects in the dynamics of tumor cords, Phys. Rev. E, 65, 051918, (2002), 1-10
[19] Mallet, D. G.; De Pillis, L. G., A cellular automata model of tumor-immune system interactions, J. Theoret. Biol., 239, 334-350, (2006) · Zbl 1445.92079
[20] De Pillis, L. G.; Mallet, D. G.; Radunskaya, A. E., Spatial tumor-immune modeling, Comput. Math. Methods Med., 7, 159-176, (2006) · Zbl 1111.92036
[21] Menchón, S. A.; Ramos, R. A.; Condat, C. A., Modeling subspecies and the tumor-immune system interaction: steps towards understanding therapy, Physica A, 386, 713-719, (2007)
[22] Wodarz, D.; Komarova, N. L., Computational biology of cancer, (2005), World Scientific Singapore · Zbl 1126.92029
[23] (Morstyn, G.; Sheridan, W., Cell Therapy, (1996), Cambridge UP Cambridge, UK)
[24] (DeVita, V. T.; Hellman, S.; Rosenberg, S. A., Principles and Practice of Oncology, (2005), Lippincott Williams & Wilkins Philadelphia)
[25] Rosenberg, S. A., The emergence of modern cancer immunotherapy, Ann. Surg. Oncol., 12, 1-3, (2005)
[26] Meltzer, M. S.; Stevenson, M. M.; Leonard, E. J., Characterization of macrophage chemotaxins in tumor cell cultures and comparison with lymphocyte-derived chemotactic factors, Cancer Res., 37, 721-725, (1977)
[27] Delens, N.; Torreele, E.; Savelkool, H.; de Baetselier, P.; Bouwens, L., Tumor-derived transforming growth factor-\(\beta 1\) and interleukin-6 are chemotactic for lymphokine-activated killer cells, Int. J. Cancer, 57, 696-700, (1994)
[28] Hicks, A. M., Transferable anticancer innate immunity in spontaneous regression/complete resistance mice, Proc. Natl. Acad. Sci. USA, 103, 7753-7758, (2006)
[29] Brú, A.; Albertos, S.; LópezGarcía-Asenjo, J. A.; Brú, I., Pinning of tumoral growth by enhancement of immune response, Phys. Rev. Lett., 92, 238101, (2004), 1-4
[30] Condat, C. A.; CapogrossoSansone, B.; Delsanto, P. P.; Scalerandi, M., Modeling cancer growth, Rec. Res. Dev. Biophys. Chem., 2, 53-69, (2001)
[31] Menchón, S. A.; Condat, C. A., Cancer growth: predictions of a realistic model, Phys. Rev. E, 78, 022901, (2008), 1-4
[32] Capogrosso Sansone, B.; Delsanto, P. P.; Magnano, M.; Scalerandi, M., Effects of anatomical constraints on tumor growth, Phys. Rev. E, 64, 021903, (2001), 1-8
[33] Menchón, S. A.; Condat, C. A., Modeling tumor cell shedding, Eur. Biophys. J., 38, 479-485, (2009)
[34] Delsanto, P. P.; Griffa, M.; Condat, C. A.; Delsanto, S.; Morra, L., Bridging the gap between mesoscopic and macroscopic models: the case of multicellular tumor spheroids, Phys. Rev. Lett., 94, 148105, (2005), 1-4
[35] Goetzl, E. J.; Tashjian, A. H.; Rubin, R. H.; Austen, K. F., Production of a low molecular weight eosinophil polymorphonuclear leukocyte chemotactic factor by anaplastic squamous cell carcinomas of human lung, J. Clin. Investigation, 61, 770-780, (1978)
[36] Van Damme, J.; Proost, P.; Lenaerts, J.-P.; Opdenakker G, G., Structural and functional identification of two human, tumor derived, monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family, J. Exp. Med., 176, 59-65, (1992)
[37] Wiedemann, A.; Depoil, D.; Faroudi, M.; Valitutti, S., Cytotoxic T lymphocytes kill multiple targets simultaneously via spatiotemporal uncoupling of lytic and stimulatory synapses, Proc. Natl. Acad. Sci. USA, 103, 10985-10990, (2006)
[38] Speiser, D. E.; Romero, P., Molecularly defined vaccines for cancer immunotherapy, and protective T cell immunity, Semin. Immunol., 22, 144-154, (2010)
[39] Curti, B. D., Influence of interleukin-2 regimens on circulating populations of lymphocytes after adoptive transfer of anti-CD3-stimulated T cells: results from a phase I trial in cancer patients, J. Immunother. Emphasis Tumor Immunol., 19, 296-308, (1996)
[40] Merchant, R. E.; McVicar, D. W.; Merchant, L. H.; Young, H. F., Treatment of recurrent malignant glioma by repeated intracerebral injections of human recombinant interleukin-2 alone or in combination with systemic interferon-alpha. results of a phase I clinical trial, J Neurooncol., 12, 75-83, (1992)
[41] Murray, J. D., Mathematical biology, vol. I, (2002), Springer New York · Zbl 1006.92001
[42] Beretta, E.; Kuang, Y., Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33, 1144-1165, (2002) · Zbl 1013.92034
[43] d’Onofrio, A.; Gatti, F.; Cerrai, P.; Freschi, L., Delay-induced oscillatory dynamics of tumour-immune system interaction, Math. Comp. Modelling, 51, 572-591, (2010) · Zbl 1190.34088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.