×

Random sums of random variables and vectors: including infinite means and unequal length sums. (English) Zbl 1326.60062

Summary: Let \(\{X,X_i,i=1,2,\dots\}\) be independent nonnegative random variables with common distribution function \(F(x)\), and let \(N\) be an integer-valued random variable independent of \(X\). Using \(S_0 = 0\) and \(S_n=S_{n-1} + X_n\) the random sum \(S_N\) has the distribution function \(G(x) =\sum_{i=0}^\infty \operatorname{P}(N=i)\operatorname{P}(S_i\leq x)\) and tail distribution \(\overline{G}(x)=1-G(x)\). Under suitable conditions, it can be proved that \(\overline{G}(x)\sim \operatorname{E}(N)\overline{F}(x)\) as \(x\to \infty\). In this paper, we extend previous results to obtain general bounds and asymptotic bounds and equalities for random sums where the components can be independent with infinite mean, regularly varying with index 1 or \(O\)-regularly varying. In the multivariate case, we obtain asymptotic equalities for multivariate sums with unequal numbers of terms in each dimension.

MSC:

60G50 Sums of independent random variables; random walks
60F05 Central limit and other weak theorems
60F99 Limit theorems in probability theory
62E20 Asymptotic distribution theory in statistics
60E99 Distribution theory
Full Text: DOI

References:

[1] M.M. Ali, N.N. Mikhail, and M.S. Haq, A class of bivariate distributions including the bivariate logistic, J. Multivariate Anal., 8:405-412, 1978. · Zbl 0387.62019 · doi:10.1016/0047-259X(78)90063-5
[2] A. Baltrūnas, E. Omey, and S. Van Gulck, Hazard rates and subexponential distributions, Publ. Inst. Math., Nouv. Sér., 80(94):29-46, 2006. · Zbl 1164.60300 · doi:10.2298/PIM0694029B
[3] N.H. Bingham, C.M. Goldie, and J.L. Teugels, Regular Variation. Encyclopedia ofMathematics and Its Applications, Cambridge Univ. Press, Cambridge, 1987. · Zbl 0617.26001
[4] V.P. Chistyakov, A theorem on sums of independent positive random variables and its application to branching random processes, Theory Probab. Appl., 9:640-648, 1964. · doi:10.1137/1109088
[5] J. Chover, P. Ney, and S. Wainger, Functions of probability measures, J. Anal. Math., 26:255-302, 1973. · Zbl 0276.60018 · doi:10.1007/BF02790433
[6] D.B.H. Cline, Convolutions of distributions with exponential and subexponential tails, J. Aust. Math. Soc., Ser. A, 43:347-365, 1987. · Zbl 0633.60021 · doi:10.1017/S1446788700029633
[7] Conway, DA; Kotz, S. (ed.); Johnson, NL (ed.), Farlie-Gumbel-Morgenstern distributions, No. 3, 28-31 (1979), New York
[8] C.M. Cuadras and J. Augé, A continuous general multivariate distribution and its properties, Commun. Stat., Theory Methods, 10(4):339-353, 1981. · Zbl 0456.62013 · doi:10.1080/03610928108828042
[9] D.J. Daley, E. Omey, and R. Vesilo, The tail behaviour of a random sum of subexponential random variables and vectors, Extremes, 10:21-39, 2007. · Zbl 1150.60029 · doi:10.1007/s10687-007-0033-3
[10] P. Embrechts, C.M. Goldie, and N. Veraverbeke, Subexponentiality and infinite divisibility, Z. Wahrscheinlichkeitstheor. Verw. Geb., 49:335-347, 1979. · Zbl 0397.60024 · doi:10.1007/BF00535504
[11] P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, Berlin, 1997. · Zbl 0873.62116 · doi:10.1007/978-3-642-33483-2
[12] G. Faÿ, B. González-Arévalo, T. Mikosch, and G. Samorodnitsky, Modeling teletraffic arrivals by a Poisson cluster process, Queueing Syst., 54:121-140, 2006. · Zbl 1119.60075 · doi:10.1007/s11134-006-9348-z
[13] S. Foss, D. Korshunov, and S. Zachary, An Introduction to Heavy-tailed and Subexponential Distributions, Vol. 38, Springer, New York, 2011. · Zbl 1250.62025
[14] J. Geluk and L. de Haan, Regular Variation, Extensions and Tauberian Theorems, CWI Tracts, Vol. 40, Centre for Mathematics and Computer Science, Amsterdam, 1987. · Zbl 0624.26003
[15] L. de Haan and E. Omey, Integrals and derivatives of regularly varying functions in Rd and domains of attraction of stable distributions II, Stochastic Processes Appl., 16:157-170, 1983. · Zbl 0528.60021 · doi:10.1016/0304-4149(84)90016-4
[16] G. Léveillé, Bivariate compound renewal sums with discounted claims, Eur. Actuar. J., 2:273-288, 2012. · Zbl 1258.91106 · doi:10.1007/s13385-012-0054-4
[17] M. Maejima, A generalization of Blackwell’s theorem for renewal processes to the case of non-identically distributed random variables, Rep. Stat. Appl. Res., Un. Jap. Sci. Eng., 19:1-9, 1972. · Zbl 0287.60095
[18] F. Mallor and E. Omey, Univariate and Multivariate Weighted Renewal Theory, Collection of Monographs from the Department of Statistics and Operations Research, No. 2, Public University of Navarre, Spain, 2006. · Zbl 1258.91106
[19] F. Mallor, E. Omey, and J. Santos, Multivariate subexponential distributions and random sums of random vectors, Adv. Appl. Probab., 38(4):1028-1046, 2006. · Zbl 1122.26003 · doi:10.1239/aap/1165414590
[20] K.V. Mardia, Families of Bivariate Distributions, Griffin, London, 1965. · Zbl 0223.62062
[21] E. Omey, Multivariate Reguliere Variatie en Toepassingen in Kanstheorie, PhD thesis, KU Leuven, 1982 (in Dutch). · Zbl 1150.60029
[22] E. Omey, Random sums of random vectors, Publ. Inst. Math., Nouv. Sér., 48(62):191-198, 1990. · Zbl 0735.60023
[23] E. Omey, Subexponential distributions in ℝd, Journal of Mathematical Sciences. Proceedings of the Seminar on Stability Problems for Stochastic Models, Pamplona, Spain, 2003, Part III, 138(1):5434-5449, 2006. · Zbl 1117.62054
[24] E. Omey and J.L. Teugels, Weighted renewal functions: A hierarchical approach, Adv. Appl. Probab., 34:394-415, 2002. · Zbl 1009.60075 · doi:10.1239/aap/1025131224
[25] J.W. Pratt, On interchanging limits and integrals, Ann. Math. Stat., 31:74-77, 1960. · Zbl 0090.26802 · doi:10.1214/aoms/1177705988
[26] S.I. Resnick, Extreme Values, Regular Variation and Point Processes, Springer, New York, 1987. · Zbl 0633.60001 · doi:10.1007/978-0-387-75953-1
[27] W. Schucany, Parr W., and J. Boyer, Correlation structure in Farlie-Gumbel-Morgenstern distributions, Biometrica, 65:650-653, 1978. · Zbl 0397.62033 · doi:10.1093/biomet/65.3.650
[28] E. Seneta, Regularly Varying Functions, Lect. Notes Math., Vol. 508, Springer, New York, 1976. · Zbl 0324.26002
[29] V.V. Shneer, Estimates for the distributions of the sums of subexponential random variables, Sib. Math. J., 45(6):1143-1158, 2004. · Zbl 1126.62327 · doi:10.1023/B:SIMJ.0000048931.70386.68
[30] A. Skučaitė, Large deviations for sums of independent heavy-tailed random variables, Lith. Math. J., 44(2):198-208, 2004. · Zbl 1062.60024 · doi:10.1023/B:LIMA.0000033784.64716.74
[31] A. Stam, Regular variation of the tail of a subordinated probability distribution, Adv. Appl. Probab., 5:308-327, 1973. · Zbl 0264.60029 · doi:10.2307/1426038
[32] J.L. Teugels, The class of subexponential distributions, Ann. Probab., 3:1000-1011, 1975. · Zbl 0374.60022 · doi:10.1214/aop/1176996225
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.