×

The tail behaviour of a random sum of subexponential random variables and vectors. (English) Zbl 1150.60029

Let \(G\) be the CDF of \(Z=\sum_{i=0}^\nu X_i\), where \(X_i\) are i.i.d. r.v.s with CDF \(F\) and \(\nu\) is independent of \(X_i\). The authors demonstrate that \[ {1-G(x)\over 1-F(x)}\to E\nu \] if \(1-F(x)\) is an \(O\)-regularly varying subexponential function with the lower Matusewska index \(\beta<-1\) and \(E\nu^{| \beta| +1+\varepsilon}<\infty \) (for some \(\varepsilon>o\)). If \(\beta>-1\) then \(E\nu<\infty\) is sufficient. Special attention is paid to the nonnegative stable \(F\). A generalization to the bivariate case is considered.

MSC:

60G70 Extreme value theory; extremal stochastic processes
60E07 Infinitely divisible distributions; stable distributions
Full Text: DOI

References:

[1] Asmussen, S.: Ruin Probability. World Scientific, Singapore (2000)
[2] Athreya, K.B., Ney, P.E.: Branching Processes. Springer, Berlin (1972) · Zbl 0259.60002
[3] Baltrūnas, A., Omey, E.: The rate of convergence for subexponential distributions. Lith. Math. J. 38(1), 1–14 (1998) · Zbl 0935.60005 · doi:10.1007/BF02465540
[4] Baltrūnas, A., Omey, E.: The rate of convergence for subexponential distributions and densities. Lith. Math. J. 42(1), 1–14 (2002) · Zbl 1018.60013 · doi:10.1023/A:1015016732660
[5] Baltrūnas, A., Omey, E., Van Gulck, S.: Hazard rates and subexponential distributions. Publ. Inst. Math. (Bélgr.) 80(94), 29–46 (2006) · Zbl 1164.60300 · doi:10.2298/PIM0694029B
[6] Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987) · Zbl 0617.26001
[7] Cline, D.B.H., Resnick, S.I.: Multivariate subexponential distributions. Stoch. Process Their Appl. 42, 49–72 (1992) · Zbl 0751.62025 · doi:10.1016/0304-4149(92)90026-M
[8] Chistyakov, V.P.: A theorem on sums of independent positive random variables and its applications to branching random processes. Theory Probab. Appl. 9, 640–648 (1964) · Zbl 0203.19401 · doi:10.1137/1109088
[9] Embrechts, P., Kluppelberg, C., Mikosch, T.: Modelling Extremal Events. Springer, Berlin (1997)
[10] Embrechts, P., Maejima, M., Omey, E.: Some limit theorems for generalized renewal measures. J. London Math. Soc. 31, 184–192 (1985) · Zbl 0564.60082 · doi:10.1112/jlms/s2-31.1.184
[11] Faÿ, G., González-Arévalo, B., Mikosch, T., Samorodnitsky, G.: Modeling teletraffic arrivals by a Poisson cluster process. Queueing Syst. 54(2), 121–140 (2006) · Zbl 1119.60075 · doi:10.1007/s11134-006-9348-z
[12] Gawronski, W.: On the bell-shape of stable densities. Ann. Probab. 12, 230–242 (1984) · Zbl 0544.60024 · doi:10.1214/aop/1176993386
[13] Kalma, J.N.: Generalized Renewal Measures. Ph.D. thesis, University of Groningen. Nova Press, Groningen (1972)
[14] Karlin, S.: Total Positivity, vol. I. Stanford University Press, Stanford, CA (1968) · Zbl 0219.47030
[15] Lukacs, E.: Characteristic Functions. Griffin, London (1960) · Zbl 0087.33605
[16] Mallor, F., Omey, E.: Univariate and multivariate weighted renewal theory. In: Collection of Monographies of the Department of Statistics and Operations Research, vol. 2. Public University of Navarra, Pamplona, Spain (ISBN 84-9769-127-X) (2006)
[17] Mikosch, T., Nagaev, A.V.: Large deviations of heavy-tailed sums with applications in insurance. Extremes 1(1), 81–110 (1998) · Zbl 0927.60037 · doi:10.1023/A:1009913901219
[18] Mikosch, T., Nagaev, A.: Rates in approximations to ruin probabilities for heavy-tailed distributions. Extremes 4(1), 67–78 (2001) · Zbl 1003.60050 · doi:10.1023/A:1012237524316
[19] Omey, E.: Random sums of random vectors. Publ. Inst. Math. (Belgr.) (N.S.) 48(62), 191–198 (1990) · Zbl 0735.60023
[20] Omey, E.: Subexponential distribution functions in R d . J. Math. Sci. 138(1), 5434–5449 (2006) · Zbl 1117.62054 · doi:10.1007/s10958-006-0310-8
[21] Omey, E., Mallor, F., Santos, J.: Multivariate subexponential distributions and random sums of random vectors. Adv. Appl. Prob. 38(4), 1028–1046 (2006) · Zbl 1122.26003 · doi:10.1239/aap/1165414590
[22] Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic Processes for Insurance and Finance. Wiley, Chichester (1999) · Zbl 0940.60005
[23] Samorodnitsky, G., Taqqu, M.: Stable Non-Gaussian Random Processes. Chapman and Hall, London (1994) · Zbl 0925.60027
[24] Shneer, V.V.: Estimates for the distributions of the sums of subexponential random variables. Sib. Math. J. 45(6), 1143–1158 (2004) · Zbl 1126.62327 · doi:10.1023/B:SIMJ.0000048931.70386.68
[25] Stam, A.J.: Regular variation of the tail of a subordinated probability distribution. Adv. Appl. Prob. 5, 308–327 (1973) · Zbl 0264.60029 · doi:10.2307/1426038
[26] Teugels, J.L., Omey, E.: Weighted renewal functions: a hierarchical approach. Adv. Appl. Probab. 34, 394–415 (2002) · Zbl 1009.60075 · doi:10.1239/aap/1025131224
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.