×

Subexponential distribution functions in \(R^{d}\). (English) Zbl 1117.62054

In the univariate case a distribution function \(F\), such that \(F(0+)=0\) and \(F(x)<1\) for every \(x\in\mathbb{R}\), is said to belong to the subexponential class \(\mathcal{S}\) if \[ \lim_{x\to +\infty} \overline{F^{*2}}(x)/\overline{F}(x)=2, \] where \(F^{*2}\) denotes the convolution \(F^{*2}=F\ast F\) and \(\overline{F}(x):=1-F(x)\). In the multivariate case, \(F\) belongs to the subexponential class \(\mathcal{S}(\mathbb{R}^d)\) if, and only if, \[ \lim_{t\to +\infty} \overline{F^{*2}}(t\mathbf{x})/\overline{F}(t\mathbf{x})=2, \] whenever \(\mathbf{x}>\mathbf{0}\) and at least one of the components of \(\mathbf{x}\) is finite. Both \(\mathcal{S}\) and \(\mathcal{S}(\mathbb{R}^d)\) contain important special families. The properties of \(\mathcal{S}(\mathbb{R}^d)\) are studied in section 2 (see Theorems 7 and 10, and Propositions 8 and 9). The special case of functions of regular variation is dealt with in section 4.

MSC:

62H05 Characterization and structure theory for multivariate probability distributions; copulas
60E05 Probability distributions: general theory
62E10 Characterization and structure theory of statistical distributions
Full Text: DOI

References:

[1] L. Alpar, ”Tauberian theorems for power series of two variables,” Studia Sci. Math. Hungar., 19, 165–176 (1984). · Zbl 0523.40007
[2] A. Baltrunas and E. Omey, ”The rate of convergence for subexponential distributions,” Liet. Matem. Rink., 38, No. 1, 1–18 (1998). · Zbl 0935.60005
[3] A. Baltrunas and E. Omey, ”The rate of convergence for subexponential distributions and densities,” Liet. Matem. Rink., 42, No. 1, 1–18 (2002). · Zbl 1018.60013
[4] B. Basrak, R. A. Davis, and T. Mikosch, ”A characterization of multivariate regular variation,” Ann. Appl. Probab., 12, No. 3, 908–920 (2002). · Zbl 1070.60011 · doi:10.1214/aoap/1031863174
[5] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge Univ. Press, Cambridge (1987). · Zbl 0617.26001
[6] J. Chover, P. Ney, and S. Wainger, ”Functions of probability measures,” J. Anal. Math., 26, 255–302 (1973). · Zbl 0276.60018 · doi:10.1007/BF02790433
[7] J. Chover, P. Ney, and S. Wainger, ”Degeneracy properties of subcritical branching processes,” Ann. Probab., 1, 663–673 (1973). · Zbl 0387.60097 · doi:10.1214/aop/1176996893
[8] D. B. H. Cline, ”Convolution tails, product tails and domains of attraction,” Probab. Theor. Rel. Fields, 72, 529–557 (1986). · Zbl 0577.60019 · doi:10.1007/BF00344720
[9] D. B. H. Cline, ”Convolutions of distributions with exponential and subexponential tails,” J. Austral. Math. Soc., Ser. A, 43, 347–365 (1987). · Zbl 0633.60021 · doi:10.1017/S1446788700029633
[10] D. B. H. Cline and S. I. Resnick, ”Multivariate subexponential distributions,” Stoch. Proc. Appl., 42, 49–72 (1992). · Zbl 0751.62025 · doi:10.1016/0304-4149(92)90026-M
[11] P. Embrechts, C. M. Goldie, and N. Veraverbeke, ”Subexponentiality and infinite divisibility,” Z. Wahrsch. verw. Geb., 49, 335–347 (1979). · Zbl 0397.60024 · doi:10.1007/BF00535504
[12] P. Embrechts and C. M. Goldie, ”On closure and factorization properties of subexponential and related distributions,” J. Austral. Math. Soc., Ser. A, 29, 243–256 (1980). · Zbl 0425.60011 · doi:10.1017/S1446788700021224
[13] P. Embrechts and C. M. Goldie, ”On convolution tails,” Stoch. Proc. Appl., 13, 263–278 (1982). · Zbl 0487.60016 · doi:10.1016/0304-4149(82)90013-8
[14] P. Embrechts, ”Subexponential distribution functions and their applications: A review,” in: Proceedings of VII Conference On Probability Theory, Brasov, Roumania (1985), pp. 125–136.
[15] P. Embrechts, C. Kluppelberg, and T. Mikosch, ”Modelling extremal events,” Appl. Math. Stoch. Mod. Appl. Probab., 33 (1997). · Zbl 0873.62116
[16] J. Geluk and L. de Haan, Regular Variation, Extensions, and Tauberian Theorems, Center for Mathematics and Computer Science, Amsterdam (1987). · Zbl 0624.26003
[17] L. de Haan and E. Omey, ”Integrals and derivatives of regularly varying functions in R d and domains of attraction of stable distributions, II,” Stoch. Proc. Appl., 16, 157–170 (1983). · Zbl 0528.60021
[18] L. de Haan, E. Omey, and S. I. Resnick, ”Domains of attraction and regular variation in R d,” J. Multiv. Anal., 14, 17–33 (1984). · Zbl 0536.60027 · doi:10.1016/0047-259X(84)90045-9
[19] M. V. Johns, ”Nonparametric empirical Bayes procedures,” Ann. Math. Statist., 28, 649–669 (1957). · Zbl 0088.35304 · doi:10.1214/aoms/1177706877
[20] F. Mallor and E. Omey, ”Shocks, runs and random sums,” J. Appl. Probab., 38, 438–448 (2001). · Zbl 0987.60028 · doi:10.1239/jap/996986754
[21] F. Mallor and E. Omey, ”Shocks, runs and random sums: Asymptotic behavior of the distribution function,” (2001) (to appear). · Zbl 0987.60028
[22] F. Mallor, E. Omey, and J. Santos, ”Lifetime of series systems subject to shocks,” J. Dependability Quality Management (2003) (to appear).
[23] F. Mallor, E. Omey, and J. Santos, ”Comportamiento asintotico de un modelo de fiabilidad mixto acumulado y de rachas de shocks,” in: XXVII Congreso Nacional de Estadistica e Investigacion Operativa, Lleida (2003).
[24] E. Omey, Multivariate Reguliere Variatie en Toepassingen in kanstheorie, Ph.D. Thesis, K.U.Leuven (1982) (in Dutch).
[25] E. Omey, ”Multivariate regular variation and applications in probability theory,” Eclectica, 74 (1989). · Zbl 0688.62016
[26] E. Omey, ”Random sums of random vectors,” Publ. Inst. Math. Béograd, 48, No. 62, 191–198 (1990). · Zbl 0735.60023
[27] E. Omey, ”On the difference between the product and the convolution product of distribution functions,” Publ. Inst. Math. Béograd, 55, No. 69, 111–145 (1994). · Zbl 0824.60032
[28] E. Omey, ”On a subclass of regularly varying functions,” J. Statist. Planning Inform., 45, 275–290 (1995). · Zbl 0824.60044 · doi:10.1016/0378-3758(94)00077-8
[29] E. Omey, ”On the difference between the distribution function of the sum and the maximum of real random variables,” Publ. Inst. Math. B’eograd, 71, No. 85, 63–77 (2002). · Zbl 1029.60012 · doi:10.2298/PIM0271063O
[30] E. Omey, ”Subexponential distributions and the difference between the product and the convolution product of distribution functions in R d,” (2003) (forthcoming).
[31] E. Omey and J. L. Teugels, ”Weighted renewal functions: A hierarchical approach,” Adv. Appl. Probab., 34, 394–415 (2002). · Zbl 1009.60075 · doi:10.1239/aap/1025131224
[32] E. Omey and E. Willekens, ”Second-order behavior of the tail of a subordinated probability distribution,” Stoch. Proc. Appl., 21, 339–353 (1986). · Zbl 0589.60012 · doi:10.1016/0304-4149(86)90105-5
[33] E. Omey and E. Willekens, ”Second-order behavior of distributions subordinate to a distribution with finite mean,” Comm. Statist. Stoch. Mod., 3, No. 3, 311–342 (1987). · Zbl 0635.60018 · doi:10.1080/15326348708807059
[34] E. Omey and E. Willekens, ”Abelian and Tauberian theorems for the Laplace transform of functions in several variables,” J. Multiv. Anal., 30, 292–306 (1988). · Zbl 0684.44002 · doi:10.1016/0047-259X(89)90041-9
[35] J. W. Pratt, ”On interchanging limits and integrals,” Ann. Statist., 31, 74–77 (1960). · Zbl 0090.26802 · doi:10.1214/aoms/1177705988
[36] S. I. Resnick, ”Point processes, regular variation and weak convergence,” Adv. Appl. Probab., 18, 66–138 (1986). · Zbl 0597.60048 · doi:10.2307/1427239
[37] S. I. Resnick, Extreme Values, Regular Variation and Point Processes, Springer, New York (1987). · Zbl 0633.60001
[38] E. Seneta, ”Functions of regular variation,” Lect. Note. Math., 506 (1976). · Zbl 0324.26002
[39] A. Stam, Regular Variation in R d + and the Abel-Tauber Theorem, Preprint, Math. Inst. Rijksuniversiteit Groningen, The Netherlands (1977).
[40] J. L. Teugels, ”The class of subexponential distributions,” Ann. Probab., 3, 1000–1011 (1975). · Zbl 0374.60022 · doi:10.1214/aop/1176996225
[41] E. Willekens, Higher-Order Theory for Subexponential Distributions, Ph.D. Thesis, K.U.Leuven (1986) (in Dutch). · Zbl 0589.60012
[42] A. Yakimiv, ”Multidimensional Tauberian theorems and the Bellman-Harris process,” Mat. Sbornik, 115, No. 3, 463–477 (1981).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.