×

Recent Advances in MercuryDPM. (English) Zbl 07702683

Summary: In this paper we introduce the open-source code MercuryDPM: a code for simulating discrete particles. The paper discusses software and management issues that may be interesting for the developers of other open-source codes. Then we review the new features that have been added since the last publication: an improved Hertz-Mindlin model; a new liquid bridge model of Lian and Seville; a droplet-spray model; better support for re-creating complex, measured particle size distributions; a new implementation of rigid clumps; an implementation of elastic membranes; a wear model for walls; a soft-kill feature and a cloud-deployment interface for AWS.

MSC:

76M99 Basic methods in fluid mechanics
76T25 Granular flows
76T10 Liquid-gas two-phase flows, bubbly flows
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
70-04 Software, source code, etc. for problems pertaining to mechanics of particles and systems
70-08 Computational methods for problems pertaining to mechanics of particles and systems

References:

[1] Weinhart, T., Tunuguntla, D.R., Van Schrojenstein-Lantman, M.P., Van Der Horn, A.J., Denissen, I.F.C., Windows-Yule, C.R., De Jong, A.C., Thornton, A.R.: MercuryDPM: a fast and flexible particle solver part A: Technical advances. In: Springer Proceedings in Physics, vol. 188 (2017) · Zbl 1451.74007
[2] Weinhart, T., Tunuguntla, D.R., Lantman, M.P.V.S., Denissen, I.F., Christopher, R.W.-Y., Polman, H., Tsang, J.M.F., Jin, B., Orefice, L., Vaart, K.V.D., Roy, S., Shi, H., Pagano, A., DenBreeijen, W., Scheper, B.J., Jarray, A., Luding, S., Thornton, A.R.: MercuryDPM: Fast, flexible particle simulations in complex geometries part II: Applications. In: 5th International Conference on Particle-Based Methods—Fundamentals and Applications, PARTICLES 2017 (2017)
[3] Thornton, A.R., Post, M., Orefice, L., Rapino, P., Roy, S., Polman, H., Shaheen, M.Y., Naranjo, J.E.A., Cheng, H., Jing, L. et al.: Faster, more flexible, particle simulations: The future of MercuryDPM. In: 8th International Conference on Discrete Element Methods, DEM 2019 (2019)
[4] Thornton, A.R., Krijgsman, D., te Voortwis, A., Ogarko, V., Luding, S., Fransen, R., Gonzalez, S., Bokhove, O., Imole, O., Weinhart, T.: A review of recent work on the discrete particle method at the University of Twente : An introduction to the open-source package MercuryDPM. In: DEM 6: 6th International Conference on Discrete Element Methods and Related Techniques, pp. 393-399 (2013)
[5] Thornton, AR; Krijgsman, D.; Fransen, RHA; Gonzalez, S.; Tunuguntla, DR; te Voortwis, A.; Luding, S.; Bokhove, O.; Weinhart, T., Mercury-DPM: fast particle simulations in complex geometries, EnginSoft Newslett. Simul. Based Eng. Sci., 10, 1, 48-53 (2013)
[6] Tunuguntla, D.R., Weinhart, T., Thornton, A.R.: Discrete particle simulations with MercuryDPM. In: Alert Doctoral School 2017: Discrete Element Modeling (2017)
[7] Weinhart, T.; Orefice, L.; Post, M.; van Schrojenstein Lantman, MP; Denissen, IFC; Tunuguntla, DR; Tsang, JMF; Cheng, H.; Shaheen, MY; Shi, H., Fast, flexible particle simulations—an introduction to MercuryDPM, Comput. Phys. Commun., 249, 107129 (2020) · Zbl 07678501 · doi:10.1016/j.cpc.2019.107129
[8] Ogarko, V.; Luding, S., A fast multilevel algorithm for contact detection of arbitrarily polydisperse objects, Comput. Phys. Commun., 183, 932-936 (2012) · doi:10.1016/j.cpc.2011.12.019
[9] Tunuguntla, DR; Thornton, AR; Weinhart, T., From discrete elements to continuum fields: extension to bidisperse systems, Comput. Particle Mech., 3, 3, 349-365 (2016) · doi:10.1007/s40571-015-0087-y
[10] Heil, M., Hazel, A.L.: oomph-lib—an object-oriented multi-physics finite-element library. In: Fluid-structure interaction, pp. 19-49. Springer (2006) · Zbl 1323.74085
[11] Cheng, H.; Thornton, AR; Luding, S.; Hazel, ALL; Weinhart, T., Concurrent multi-scale modeling of granular materials: role of coarse-graining in fem-dem coupling, Comput. Methods Appl. Mech. Eng., 403, 115651 (2022) · Zbl 1527.74073 · doi:10.1016/j.cma.2022.115651
[12] Ahrens, J., Geveci, B., Law, C.: Paraview: An end-user tool for large data visualization (2005)
[13] Mindlin, RD; Deresiewicz, H., Elastic spheres in contact under varying oblique forces, J. Appl. Mech., 20, 327-344 (1953) · Zbl 0051.41202 · doi:10.1115/1.4010702
[14] Luding, S., Cohesive, frictional powders: contact models for tension, Granular Matter., 10, 4, 235-246 (2008) · Zbl 1304.74019 · doi:10.1007/s10035-008-0099-x
[15] Di Renzo, A.; Di Maio, FP, Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes, Chem. Eng. Sci., 59, 525-541 (2004) · doi:10.1016/j.ces.2003.09.037
[16] Willett, CD; Adams, MJ; Johnson, SA; Seville, JPK, Capillary bridges between two spherical bodies, Langmuir, 16, 24, 9396-9405 (2000) · doi:10.1021/la000657y
[17] Lian, G.; Seville, J., The capillary bridge between two spheres: new closed-form equations in a two century old problem, Adv. Colloid Interface Sci., 227, 53-62 (2016) · doi:10.1016/j.cis.2015.11.003
[18] Zhang, L.; Wu, C., Discrete element analysis of normal elastic impact of wet particles, Powder Technol., 362, 628-634 (2020) · doi:10.1016/j.powtec.2019.12.021
[19] Angelidakis, V.; Nadimi, S.; Otsubo, M.; Utili, S., Clump: a code library to generate universal multi-sphere particles, SoftwareX, 15, 100735 (2021) · doi:10.1016/j.softx.2021.100735
[20] Kot, M.; Nagahashi, H., Mass spring models with adjustable Poisson’s ratio, Vis. Comput., 33, 3, 283-291 (2017) · doi:10.1007/s00371-015-1194-8
[21] Bridson, R., Marino, S., Fedkiw, R.: Simulation of clothing with folds and wrinkles. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’03, pp. 28-36. Eurographics Association (2003)
[22] Ostoja-Starzewski, M., Lattice models in micromechanics, Appl. Mech. Rev., 55, 1, 35-60 (2002) · Zbl 1110.74611 · doi:10.1115/1.1432990
[23] Qu, T.; Feng, YT; Wang, Y.; Wang, M., Discrete element modelling of flexible membrane boundaries for triaxial tests, Comput. Geotech., 115, 103154 (2019) · doi:10.1016/j.compgeo.2019.103154
[24] de Bono, J.; Mcdowell, G.; Wanatowski, D., Discrete element modelling of a flexible membrane for triaxial testing of granular material at high pressures, Géotech. Lett., 2, 4, 199-203 (2012) · doi:10.1680/geolett.12.00040
[25] Götz, H.; Santarossa, A.; Sack, A.; Pöschel, T.; Müller, P., Soft particles reinforce robotic grippers: robotic grippers based on granular jamming of soft particles, Granular Matter., 24, 1, 31 (2022) · doi:10.1007/s10035-021-01193-4
[26] Archard, J., Contact and rubbing of flat surfaces, J. Appl. Phys., 24, 8, 981-988 (1953) · doi:10.1063/1.1721448
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.