×

Quasi-Banach algebras and Wiener properties for pseudodifferential and generalized metaplectic operators. (English) Zbl 1504.35664

Summary: We generalize the results for Banach algebras of pseudodifferential operators obtained by K. Gröchenig and Z. Rzeszotnik [Ann. Inst. Fourier 58, No. 7, 2279–2314 (2008; Zbl 1168.35050)] to quasi-algebras of Fourier integral operators. Namely, we introduce quasi-Banach algebras of symbol classes for Fourier integral operators that we call generalized metaplectic operators, including pseudodifferential operators. This terminology stems from the pioneering work on Wiener algebras of Fourier integral operators [E. Cordero et al., J. Math. Pures Appl. (9) 99, No. 2, 219–233 (2013; Zbl 1306.42045)], which we generalize to our framework. This theory finds applications in the study of evolution equations such as the Cauchy problem for the Schrödinger equation with bounded perturbations, cf. [E. Cordero, G. Giacchi and L. Rodino, “Wigner analysis of operators. II: Schrödinger equations”, Preprint, arXiv:2208.00505].

MSC:

35S05 Pseudodifferential operators as generalizations of partial differential operators
35S30 Fourier integral operators applied to PDEs
47G30 Pseudodifferential operators
42C15 General harmonic expansions, frames

References:

[1] Bastianoni, F.; Cordero, E., Characterization of smooth symbol classes by Gabor matrix decay, J. Fourier Anal. Appl. (2022) · Zbl 1501.47089 · doi:10.1007/s00041-021-09895-2
[2] Beals, R., Characterization of pseudodifferential operators and applications, Duke Math. J., 44, 1, 45-57 (1977) · Zbl 0353.35088 · doi:10.1215/S0012-7094-77-04402-7
[3] Baskakov, AG, Wiener’s theorem and the asymptotic estimates of the elements of inverse matrices, Funct. Anal. Appl., 24, 222-224 (1990) · Zbl 0728.47021 · doi:10.1007/BF01077964
[4] Bonsall, F.; Duncan, J., Complete Normed Algebras (1973), New York: Springer-Verlag, New York · Zbl 0271.46039 · doi:10.1007/978-3-642-65669-9
[5] Candés, EJ; Demanet, L., The curvelet representation of wave propagators is optimally sparse, Commun. Pure Appl. Math., 58, 1472-1528 (2005) · Zbl 1078.35007 · doi:10.1002/cpa.20078
[6] Candés, EJ; Demanet, L.; Ying, L., Fast computation of Fourier integral operators, SIAM J. Sci. Comput., 29, 6, 2464-2493 (2007) · Zbl 1157.65522 · doi:10.1137/060671139
[7] Cordero, E., Giacchi, G., Rodino, L.: Wigner analysis of operators. Part II: Schrödinger equations. Submitted. arXiv:2208.00505
[8] Cordero, E.; Nicola, F.; Rodino, L., Sparsity of Gabor representation of Schrödinger propagators, Appl. Comput. Harmon. Anal., 26, 3, 357-370 (2009) · Zbl 1171.35133 · doi:10.1016/j.acha.2008.08.003
[9] Cordero, E.; Rodino, N., Wigner analysis of operators. Part I: pseudodifferential operators and wave front sets, Appl. Comput. Harmon. Anal., 58, 85-123 (2022) · Zbl 1485.94017 · doi:10.1016/j.acha.2022.01.003
[10] Cordero, E., Rodino, N.: Characterization of modulation spaces by symplectic representations and applications to Schrödinger equations. Submitted · Zbl 1516.42019
[11] Cordero, E.; Gröchenig, K.; Nicola, F.; Rodino, L., Wiener algebras of Fourier integral operators, J. Math. Pures Appl., 99, 2, 219-233 (2013) · Zbl 1306.42045 · doi:10.1016/j.matpur.2012.06.012
[12] Cordero, E.; Gröchenig, K.; Nicola, F.; Rodino, L., Generalized metaplectic operators and the Schrödinger equation with a potential in the Sjöstrand class, J. Math. Phys., 55, 8, 081506 (2014) · Zbl 1295.81050 · doi:10.1063/1.4892459
[13] Cordero, E., Rodino, L.: Time-Frequency Analysis of Operators. De Gruyter Studies in Mathematics (2020) · Zbl 07204958
[14] DeVore, RA; Temlyakov, VN, Some remarks on Greedy algorithms, Adv. Comput. Math., 5, 173-187 (1996) · Zbl 0857.65016 · doi:10.1007/BF02124742
[15] Feichtinger, H.G.: Modulation spaces on locally compact abelian groups. Technical Report, University Vienna, 1983. In: Krishna, M., Radha, R., Thangavelu, S. (eds) Wavelets and Their Applications, pp. 99-140. Allied Publishers (2003)
[16] Feichtinger, H.G.: Banach spaces of distributions of Wiener’s type and interpolation. In: Functional Analysis and Approximation (Oberwolfach, 1980), vol. 60 of Internat. Ser. Numer. Math., pp. 153-165. Birkhäuser, Basel (1981) · Zbl 0465.43006
[17] Feichtinger, H.G.: Banach convolution algebras of Wiener type. In: Functions, Series, Operators, Vol. I, II (Budapest, 1980), pp. 509-524. North-Holland, Amsterdam (1983) · Zbl 0528.43001
[18] Feichtinger, HG, Generalized amalgams, with applications to Fourier transform, Can. J. Math., 42, 3, 395-409 (1990) · Zbl 0733.46014 · doi:10.4153/CJM-1990-022-6
[19] Folland, GB, Harmonic Analysis in Phase Space (1989), Princeton: Princeton Univ. Press, Princeton · Zbl 0682.43001 · doi:10.1515/9781400882427
[20] de Gosson, M.A.: Symplectic methods in harmonic analysis and in mathematical physics. In: Pseudo-Differential Operators, Theory and Applications, vol. 7. Birkhäuser/Springer, Basel (2011) · Zbl 1247.81510
[21] Galperin, YV, Young’s convolution inequalities for weighted mixed (quasi-) norm spaces, J. Inequal. Spec. Funct., 5, 1, 1-12 (2014) · Zbl 1315.26023
[22] Galperin, YV; Samarah, S., Time-frequency analysis on modulation spaces \(M^{p, q}_m, 0<p, q\le \infty \), Appl. Comput. Harmon. Anal., 16, 1, 1-18 (2004) · Zbl 1040.42025 · doi:10.1016/j.acha.2003.09.001
[23] Gröchenig, K., Time-frequency analysis of Sjöstrand’s class, Rev. Mat. Iberoam., 22, 2, 703-724 (2006) · Zbl 1127.35089 · doi:10.4171/RMI/471
[24] Gröchenig, K.; Rzeszotnik, Z., Banach algebras of pseudodifferential operators and their almost diagonalization, Ann. Inst. Fourier, 58, 7, 2279-2314 (2008) · Zbl 1168.35050 · doi:10.5802/aif.2414
[25] Pavlović, M., Function Classes on the Unit Disc: An Introduction (2019), Boston: De Gruyter, Boston · Zbl 1441.30002 · doi:10.1515/9783110630855
[26] Rauhut, H., Wiener amalgam spaces with respect to quasi-Banach spaces, Coll. Math., 109, 2, 345-362 (2007) · Zbl 1125.46022 · doi:10.4064/cm109-2-13
[27] Rudin, W., Functional Analysis (1991), New York: McGraw Hill Education, New York · Zbl 0867.46001
[28] Mascarello, M.; Rodino, L., Partial Differential Equations with Multiple Characteristics (1997), Berlin: Akademie Verlag, Berlin · Zbl 0888.35001
[29] Rolewicz, S. Metric linear spaces. Monografie Matematyczne, Tom. 56. [Mathematical Monographs, Vol. 56]. PWN-Polish Scientific Publishers. Warsaw, 1972 · Zbl 0226.46001
[30] Sjöstrand, J., An algebra of pseudodifferential operators, Math. Res. Lett., 1, 2, 185-192 (1994) · Zbl 0840.35130 · doi:10.4310/MRL.1994.v1.n2.a6
[31] J. Sjöstrand. Wiener type algebras of pseudodifferential operators. In: Séminaire sur les Équations aux Dérivées Partielles, pp. 1994-1995, Exp. No. IV, 21. École Polytech., Palaiseau (1995) · Zbl 0880.35145
[32] Toft, J., Continuity and compactness for pseudo-differential operators with symbols in quasi-Banach spaces or Hörmander classes, Anal. Appl., 15, 3, 353-389 (2017) · Zbl 1459.47019 · doi:10.1142/S0219530516500159
[33] Wigner, E., On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40, 5, 749-759 (1932) · Zbl 0004.38201 · doi:10.1103/PhysRev.40.749
[34] Zhang, Z.C.: Uncertainty principle for the free metaplectic transformation. Submitted
[35] Zhang, Z.C.: Linear canonical Wigner distribution based noisy LFM signals detection through the output snr improvement analysis. Submitted · Zbl 07123448
[36] Zhang, Z., He, Y.: Free metaplectic Wigner distribution: definition and Heisenberg’s uncertinty principles
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.