×

Wiener’s theorem and the asymptotic estimates of the elements of inverse matrices. (English. Russian original) Zbl 0728.47021

Funct. Anal. Appl. 24, No. 3, 222-224 (1990); translation from Funkts. Anal. Prilozh. 24, No. 3, 64-65 (1990).
Let H be an infinite dimensional separable complex Hilbert space with an orthonormal basis \((e_ n)\). Let End(H) be the Banach algebra of endomorphisms of H. To an operator \(A\in End(H)\) we associate a matrix \((a_{ij})\) defined by \(a_{ij}=<Ae_ i\), \(e_ j>\), i,j\(\geq 1\). If \(d_ k(A)=_{| i-j| =k}| a_{ij}|\), \(k\in Z\), the set of all integers, and assuming that for some weight \(\alpha\) from Z to \(R^+=\{t\in R:\) \(t>0\}\), we have \(\sum_{k\in Z}d_ k(A)\alpha (k)<\infty,\) the author proves the following:
Theorem: If A is left (right) invertible and one of the following conditions is satisfied:
1. \(k^{-1}\ln \alpha (k)\) converges to 0, as \(| k|\) increases to \(\infty.\)
2. There is \(q>1\), \(c>0:\) \(d_ k(A)\leq c(1+| k|^{-q}).\)
3. There is \(\epsilon >0\), \(c>0:\alpha\) (k)\(\geq c\) exp(\(\epsilon\) k), \(k\in Z.\)
Then there exists a left (right) inverse operator \(B\in End(H)\), whose matrix satisfies the corresponding condition:
1’. \(\sum_{k\in Z}d_ k(B)\alpha (k)<\infty;\)
2’. \(d_ k(B)\leq c_ 1\) \((| k| +1)^{-q};\)
3’. \(d_ k(B)\leq c_ 1\exp (-\epsilon_ 0k)\), \(k\in Z\), for some \(\epsilon_ 0>0\).
Reviewer: M.Kutkut (Jeddah)

MSC:

47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
Full Text: DOI

References:

[1] C. de Boor, ”A bound of the L?-norm of L2-approximation by splines in terms of a global mesh ratio,” Math. Comp.,30, No. 136, 765-771 (1976). · Zbl 0345.65004
[2] B. S. Mityagin, ”Quadratic pencils and least-squares piecewise-polynomial approximation,” Math. Comp.,40, No. 161, 283-300 (1983). · Zbl 0534.41009 · doi:10.1090/S0025-5718-1983-0679446-0
[3] S. Demko, ”Inverses of band matrices and local convergence of spline projections,” SIAM J. Numer. Anal.,14, No. 4, 616-619 (1977). · Zbl 0367.65024 · doi:10.1137/0714041
[4] S. Demko, W. F. Moss, and Ph. W. Smith, ”Decay rates for inverses of band matrices,” Math. Comp.,43, No. 168, 491-499 (1984). · Zbl 0568.15003 · doi:10.1090/S0025-5718-1984-0758197-9
[5] M. A. Shubin, ”Pseudodifference operators and their Green function,” Izv. Akad. Nauk SSSR, Ser. Mat.,49, No. 3, 652-671 (1985). · Zbl 0574.39006
[6] S. Bochner and R. S. Phillips, ”Absolutely convergent Fourier expansions for noncommutative normed rings,” Ann. of Math.,43, No. 3, 409-418 (1942). · Zbl 0060.27204 · doi:10.2307/1968800
[7] J.-P. Kahane, Séries de Fourier Absolument Convergentes, Springer, Berlin (1970). · Zbl 0195.07602
[8] V. G. Kurbatov, Voronezh State Univ., Voronezh (1982). Manuscript deposited at VINITI, No. 1017-82, Feb. 9, 1982.
[9] M. Taylor, Pseudodifferential Operators, Princeton Univ. Press, Princeton (1981).
[10] M. A. Shubin, ”Pseudodifferential almost periodic operators and von Neumann algebras,” Tr. Mosk. Mat. Obshch.,35, No. 103-164 (1976). · Zbl 0423.47020
[11] R. Beals, ”Characterization of pseudodifferential operators and applications,” Duke Math. J.,44, No. 1, 45-57 (1977). · Zbl 0353.35088 · doi:10.1215/S0012-7094-77-04402-7
[12] M. A. Shubin, ”Almost periodic functions and partial differential operators,” Usp. Mat. Nauk,33, No. 2, 3-47 (1978). · Zbl 0408.47039
[13] G. A. Meladze and M. A. Shubin, ”A functional calculus of pseudodifferential operators on unimodular Lie groups,” Tr. Sem. Petrovsk., No. 12, 164-200 (1987). · Zbl 0659.35111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.