×

Characterization of smooth symbol classes by Gabor matrix decay. (English) Zbl 1501.47089

Authors’ abstract: For \(m\in\mathbb R\) we consider the symbol classes \(S^m\), consisting of smooth functions \(\sigma\) on \(\mathbb R^{2d}\) such that \(|\partial^{\alpha}\sigma(z)|\le C_{\alpha}(1+|z|^2)^{m/2}\), \(z\in\mathbb R^{2d}\), and we show that can be characterized by an intersection of different types of modulation spaces. In the case \(m=0\) we recapture the Hörmander class \(S^0_{0, 0}\) that can be obtained by intersection of suitable Besov spaces as well. Such spaces contain the Shubin classes \(\Gamma^m_{\rho}\), \(0<\rho\le 1\), and can be viewed as their limit case \(\rho=0\). We exhibit almost diagonalization properties for the Gabor matrix of \(\tau\)-pseudodifferential operators with symbols in such classes, extending the characterization proved by K. Gröchenig and Z. Rzeszotnik [Ann. Inst. Fourier 58, No. 7, 2279–2314 (2008; Zbl 1168.35050)]. Finally, we compute the Gabor matrix of a Born-Jordan operator, which allows to prove new boundedness results for such operators.

MSC:

47G30 Pseudodifferential operators
42B35 Function spaces arising in harmonic analysis
81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics

Citations:

Zbl 1168.35050

References:

[1] Beals, R., Characterization of pseudodifferential operators and applications, Duke Math. J., 44, 1, 45-57 (1977) · Zbl 0353.35088 · doi:10.1215/S0012-7094-77-04402-7
[2] Bényi, A.; Gröchenig, K.; Okoudjou, KA; Rogers, LG, Unimodular Fourier multipliers for modulation spaces, J. Funct. Anal., 246, 2, 366-384 (2007) · Zbl 1120.42010 · doi:10.1016/j.jfa.2006.12.019
[3] Bishop, S., Mixed modulation spaces and their applications to pseudodifferential operators, J. Math. Anal. Appl., 363, 1, 255-264 (2010) · Zbl 1177.47057 · doi:10.1016/j.jmaa.2009.08.032
[4] Boggiatto, P.; Cordero, E.; Gröchenig, K., Generalized Anti-Wick operators with symbols in distributional Sobolev spaces, Integr. Equ. Oper. Theory, 48, 4, 427-442 (2004) · Zbl 1072.47045 · doi:10.1007/s00020-003-1244-x
[5] Bloom, WR, Strict local inclusion results between spaces of Fourier transforms, Pac. J. Math., 99, 2, 265-270 (1982) · Zbl 0444.43005 · doi:10.2140/pjm.1982.99.265
[6] Bony, M.; Chemin, C., Espaces fonctionnels associs au calcul de Weyl- Hörmander, Bull. Soc. Math. France, 122, 77-118 (1994) · Zbl 0798.35172 · doi:10.24033/bsmf.2223
[7] Cordero, E.: On the local well-posedness of the nonlinear heat equation associated to the fractional Hermite operator in modulation spaces. J. Pseudo-Differ. Oper. Appl. 12(13) (2021) · Zbl 1466.35357
[8] Cordero, E.; de Gosson, M.; Nicola, F., Time-frequency Analysis of Born-Jordan pseudodifferential operators, J. Funct. Anal., 272, 2, 577-598 (2017) · Zbl 1356.47055 · doi:10.1016/j.jfa.2016.10.004
[9] Cordero, E.; D’Elia, L.; Trapasso, SI, Norm estimates for \(\tau \)-pseudodifferential operators in Wiener amalgam and modulation spaces, J. Math. Anal. Appl., 471, 1-2, 541-563 (2019) · Zbl 1412.35388 · doi:10.1016/j.jmaa.2018.10.090
[10] Cordero, E.; Gröchenig, K.; Nicola, F.; Rodino, L., Wiener algebras of Fourier integral operators, J. Math. Pures Appl., 99, 2, 219-233 (2013) · Zbl 1306.42045 · doi:10.1016/j.matpur.2012.06.012
[11] Cordero, E., Rodino, L.: Time-Frequency Analysis of Operators, De Gruyter Studies in Mathematics (2020) · Zbl 07204958
[12] Cordero, E.; Nicola, F.; Rodino, L., Time-frequency analysis of Fourier integral operators, Commun. Pure Appl. Anal., 9, 1, 1-21 (2010) · Zbl 1196.42027 · doi:10.3934/cpaa.2010.9.1
[13] Cordero, E.; Nicola, F.; Rodino, L., Exponentially sparse representations of Fourier integral operators, Rev. Mat. Iberoam., 31, 2, 461-476 (2015) · Zbl 1433.35470 · doi:10.4171/RMI/841
[14] Cordero, E.; Nicola, F.; Trapasso, SI, Almost diagonalization of \(\tau \)-pseudodifferential operators with symbols in Wiener amalgam and modulation spaces, J. Fourier Anal. Appl., 25, 4, 1927-1957 (2019) · Zbl 07077729 · doi:10.1007/s00041-018-09651-z
[15] de Gosson, M.: Born-Jordan Quantization. Springer (2016) · Zbl 1338.81014
[16] de Gosson, M.; Toft, J., Continuity properties for Born-Jordan operators with symbols in Hörmander classes and modulation spaces, Acta Math. Sci., 40, 1603-1626 (2020) · Zbl 1499.47022 · doi:10.1007/s10473-020-0601-z
[17] Feichtinger, H.G.: Modulation spaces on locally compact abelian groups, Technical Report, University Vienna, 1983, and also in Wavelets and Their Applications, Krishna, M., Radha, R., Thangavelu, S. (eds.) Allied Publishers, pp. 99-140 (2003)
[18] Fournier, JJF, Local complements to the Hausdorff-Young theorem, Michigan Math. J., 20, 263-276 (1973) · Zbl 0265.43005 · doi:10.1307/mmj/1029001106
[19] Galperin, YV, Young’s convolution inequalities for weighted mixed (quasi-) norm spaces, J. Inequal. Spec. Funct., 5, 1, 1-12 (2014) · Zbl 1315.26023
[20] Galperin, YV; Samarah, S., Time-frequency analysis on modulation spaces \(M^{p, q}_m, 0<p, q\le \infty \), Appl. Comput. Harmon. Anal., 16, 1, 1-18 (2004) · Zbl 1040.42025 · doi:10.1016/j.acha.2003.09.001
[21] Gröchenig, K., Foundations of Time-Frequency Analysis (2001), Boston: Birkhäuser, Boston · Zbl 0966.42020 · doi:10.1007/978-1-4612-0003-1
[22] Gröchenig, K., Time-frequency analysis of Sjöstrand’s class, Rev. Mat. Iberoam., 22, 2, 703-724 (2006) · Zbl 1127.35089 · doi:10.4171/RMI/471
[23] Gröchenig, K.; Toft, J., Isomorphism properties of Toeplitz operators and pseudo-differential operators between modulation spaces, J. Anal. Math., 114, 1, 255-283 (2011) · Zbl 1243.42037 · doi:10.1007/s11854-011-0017-8
[24] Gröchenig, K.; Rzeszotnik, Z., Banach algebras of pseudodifferential operators and their almost diagonalization, Ann. Inst. Fourier., 58, 7, 2279-2314 (2008) · Zbl 1168.35050 · doi:10.5802/aif.2414
[25] Guo, W.; Wu, H.; Zhao, G., Inclusion relations between modulation and Triebel-Lizorkin spaces, Proc. Am. Math. Soc., 145, 11, 4807-4820 (2017) · Zbl 1383.46026 · doi:10.1090/proc/13614
[26] Holst, A.; Toft, J.; Wahlberg, P., Weyl product algebras and modulation spaces, J. Funct. Anal., 251, 463-491 (2007) · Zbl 1137.46017 · doi:10.1016/j.jfa.2007.07.007
[27] Janssen, AJAM, Bilinear phase-plane distributions functions and positivity, J. Math. Phys., 26, 1986-1994 (1985) · Zbl 0568.60018 · doi:10.1063/1.526868
[28] Kobayashi, M., Modulation spaces \(M^{p, q}\) for \(0<p, q\le \infty \), J. Funct. Spaces Appl., 4, 3, 329-341 (2006) · Zbl 1133.46308 · doi:10.1155/2006/409840
[29] Nicola, F., Rodino, L.: Global Pseudo-differential Calculus on Euclidean Spaces. Pseudo-Differential Operators. Theory and Applications, vol. 4. Birkhäuser Verlag, Basel (2010) · Zbl 1257.47002
[30] Pilipović, S.; Teofanov, N., Pseudodifferential operators on ultra-modulation spaces, J. Funct. Anal., 208, 1, 194-228 (2004) · Zbl 1060.47050 · doi:10.1016/j.jfa.2003.09.012
[31] Rochberg, R., Tachizawa, K.: Pseudodifferential operators, Gabor frames, and local trigonometric bases. In: Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis and Algorithms, Appl. Numer. Harmon. Anal., pp. 171-192. Birkhäuser Boston, Boston (1998) · Zbl 0890.42009
[32] Shubin, MA, Pseudodifferential Operators and Spectral Theory. Springer Series in Soviet Mathematics (1987), Berlin: Springer, Berlin · Zbl 0616.47040
[33] Sjöstrand, J., An algebra of pseudodifferential operators, Math. Res. Lett., 1, 2, 185-192 (1994) · Zbl 0840.35130 · doi:10.4310/MRL.1994.v1.n2.a6
[34] Sjöstrand, J., Pseudodifferential operators and weighted normed symbol spaces, Serdica Math. J., 34, 1-38 (2008) · Zbl 1199.35410
[35] Sugimoto, M.; Tomita, N., The dilation property of modulation spaces and their inclusion relation with Besov spaces, J. Funct. Anal., 248, 1, 79-106 (2007) · Zbl 1124.42018 · doi:10.1016/j.jfa.2007.03.015
[36] Teofanov, N., Continuity and Schatten-von Neumann properties for localization operators on modulation spaces, Mediterr. J. Math., 13, 2, 745-758 (2016) · Zbl 1342.47064 · doi:10.1007/s00009-014-0509-8
[37] Teofanov, N.: Bilinear localization operators on modulation spaces. J. Funct. Spaces, Art. ID 7560870, 10, (2018) · Zbl 1482.47089
[38] Toft, J., Continuity properties for modulation spaces, with applications to pseudo-differential calculus. I, J. Funct. Anal., 207, 2, 399-429 (2004) · Zbl 1083.35148 · doi:10.1016/j.jfa.2003.10.003
[39] Toft, J., Continuity properties for modulation spaces, with applications to pseudo-differential calculus. II, Ann. Global Anal. Geom., 26, 1, 73-106 (2004) · Zbl 1098.47045 · doi:10.1023/B:AGAG.0000023261.94488.f4
[40] Toft, J., Continuity and compactness for pseudo-differential operators with symbols in quasi-Banach spaces or Hörmander classes, Anal. Appl. (Singap.), 15, 3, 353-389 (2017) · Zbl 1459.47019 · doi:10.1142/S0219530516500159
[41] Toft, J.: Continuity and Schatten properties for pseudo-differential operators on modulation spaces. In: Modern Trends in Pseudo-differential Operators, vol. 172 of Oper. Theory Adv. Appl., pp. 173-206. Birkhäuser, Basel (2007) · Zbl 1133.35110
[42] Triebel, H., Theory of Function Spaces. Modern Birkhäuser Classics (2010), Basel: Springer, Basel · Zbl 1235.46002
[43] Wang, B.; Zhao, L.; Guo, B., Isometric decomposition operators, function spaces \(E_{p, q}^\lambda\) and applications to nonlinear evolution equations, J. Funct. Anal., 233, 1, 1-39 (2006) · Zbl 1099.46023 · doi:10.1016/j.jfa.2005.06.018
[44] Wang, B., Huo, Z., Hao, C., Guo, Z.: Harmonic Analysis Method for Nonlinear Evolution Equations. I. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2011) · Zbl 1254.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.