×

Numerical methods of closed-loop multibody systems with singular configurations based on the geometrical structure of constraints. (English) Zbl 1483.70029

Summary: The geometrical structure of constraints leads to the important conclusion that components of velocities and accelerations in the normal space of the constraint hypersurface are totally determined by the constraints. Orthogonal base vectors of the constraint’s normal and tangent spaces can be obtained by the QR decomposition with column permutation. A numerical method of closed-loop multibody systems with singular configurations is presented, in which the traditional hypothesis on independence of constraints is abandoned. Instead of correcting constraint violations at the end of each integration step, positions and velocities are modified to satisfy their constraint equations before they are used to form equations of motion. Such an approach can collaborate with any standard ODE solver. In order to systematically generate constraint equations and obtain the corresponding joint’s reaction forces, rotational and translational constraints of a closed-loop are standardized as part of six explicit equations, and a clear relationship between Lagrange multipliers and joint’s reaction forces is derived based on the principle of virtual power equivalence. The proposed method can dynamically identify independent constraints and modify the equations of motion accordingly. The numerical examples validated its effectiveness.

MSC:

70E55 Dynamics of multibody systems
65L99 Numerical methods for ordinary differential equations

Software:

diffEq
Full Text: DOI

References:

[1] Wittenburg, J., Dynamics of Multibody Systems (2008), Berlin: Springer, Berlin · Zbl 1131.70001
[2] Chaudhary, H.; Saha, S. K., Dynamics and Balancing of Multibody Systems (2009), Berlin: Springer, Berlin · Zbl 1153.70002 · doi:10.1007/978-3-540-78179-0
[3] Flores, P., Concepts and Formulations for Spatial Multibody Dynamics (2015), Cham: Springer, Cham · Zbl 1339.70006 · doi:10.1007/978-3-319-16190-7
[4] Soetaert, K.; Cash, J.; Mazzia, F., Solving Differential Equations in R (2012), Berlin: Springer, Berlin · Zbl 1252.65138 · doi:10.1007/978-3-642-28070-2
[5] SchRops, S.; Bartel, A.; GRunthe, M.; Maten, E. J.W., Progress in Differential-Algebraic Equations (2014), Berlin: Springer, Berlin · Zbl 1302.65001
[6] Ilchmann, A.; Reis, T., Differential-Algebraic Equations Forum (2017), Berlin: Springer, Berlin · Zbl 1358.93051 · doi:10.1007/978-3-319-46618-7
[7] Yen, J.; Haug, E. J.; Tak, T. O., Numerical methods for constrained equations of motion in mechanical system dynamics, J. Struct. Mech., 19, 1, 41-76 (1991)
[8] Petzold, L. R., Numerical solution of differential-algebraic equations in mechanical systems simulation, Physica D, 60, 1-4, 269-279 (1992) · Zbl 0779.70002 · doi:10.1016/0167-2789(92)90243-G
[9] Pogorelov, D., Differential-algebraic equations in multi-body system modeling, Numer. Algorithms, 19, 183-194 (1998) · Zbl 0924.70004 · doi:10.1023/A:1019131212618
[10] Baumgarte, J., Stabilization of constraints and integrals of motion in dynamical systems, Comput. Methods Appl. Mech. Eng., 1, 1, 1-16 (1972) · Zbl 0262.70017 · doi:10.1016/0045-7825(72)90018-7
[11] Baumgarte, J., A new method of stabilization for holonomic constraints, J. Appl. Mech., 50, 869-870 (1983) · Zbl 0534.70011 · doi:10.1115/1.3167159
[12] Ascher, U. R.; Chin, H.; Reich, S., Stabilization of DAEs and invariant manifolds, Numer. Math., 67, 2, 131-149 (1994) · Zbl 0791.65051 · doi:10.1007/s002110050020
[13] Kikuuwe, R.; Brogliato, B., A new representation of systems with frictional unilateral constraints and its Baumgarte-like relaxation, Multibody Syst. Dyn., 39, 3, 267-290 (2017) · Zbl 1384.70008 · doi:10.1007/s11044-015-9491-6
[14] Zhang, X.; Wang, C.; Guo, K.; Sun, M.; Yao, Q., Dynamics modeling and characteristics analysis of scissor seat suspension, J. Vib. Control, 23, 17, 2819-2829 (2015) · doi:10.1177/1077546315622888
[15] Tan, H.; Hu, Y.; Li, L., A continuous analysis method of planar rigid-body mechanical systems with two revolute clearance joints, Multibody Syst. Dyn., 40, 4, 347-373 (2016) · Zbl 1430.70022 · doi:10.1007/s11044-016-9562-3
[16] Flores, P.; Machado, M.; Seabra, E.; Tavares da Silva, M., A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems, J. Comput. Nonlinear Dyn., 6, 1, 011019:1-011019:9 (2011)
[17] Lin, S. T.; Huang, J. N., Stabilization of Baumgarte’s method using the Runge-Kutta approach, J. Mech. Des., 124, 4, 633-641 (2002) · doi:10.1115/1.1519277
[18] Wehage, R. A.; Haug, E. J., Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems, J. Mech. Des., 104, 1, 247-255 (1982)
[19] Nikravesh, P. E.; Haug, E. J., Generalized coordinate partitioning for analysis of mechanical system with nonholonomic constraints, J. Mech. Transm. Autom. Des., 105, 3, 379-384 (1983) · doi:10.1115/1.3267371
[20] Terze, Z.; Naudet, J., Structure of optimized generalized coordinates partitioned vectors for holonomic and non-holonomic systems, Multibody Syst. Dyn., 24, 2, 203-218 (2010) · Zbl 1376.70029 · doi:10.1007/s11044-010-9195-x
[21] Pappalardo, C. M.; Guida, D., On the use of two-dimensional Euler parameters for the dynamic simulation of planar rigid multibody systems, Arch. Appl. Mech., 87, 10, 1647-1665 (2017) · doi:10.1007/s00419-017-1279-0
[22] Sinokrot, T.; Nakhaeinejad, M.; Shabana, A. A., A velocity transformation method for the nonlinear dynamic simulation of railroad vehicle systems, Nonlinear Dyn., 51, 1-2, 289-307 (2008) · Zbl 1170.70313
[23] Uchida, T.; Callejo, A.; García de Jalón, J.; McPhee, J., On the Gröbner basis triangularization of constraint equations in natural coordinates, Multibody Syst. Dyn., 31, 3, 371-392 (2013) · doi:10.1007/s11044-013-9397-0
[24] Blajer, W.; Schiehlen, W.; Schirm, W., A projective criterion to the coordinate partitioning method for multibody dynamics, Arch. Appl. Mech., 64, 86-98 (1994) · Zbl 0793.70002
[25] Carpinelli, M.; Gubitosa, M.; Mundo, D.; Desmet, W., Automated independent coordinates’ switching for the solution of stiff DAEs with the linearly implicit Euler method, Multibody Syst. Dyn., 36, 1, 67-85 (2016) · Zbl 1372.65224 · doi:10.1007/s11044-015-9455-x
[26] Wehage, K. T.; Wehage, R. A.; Ravani, B., Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring, Mech. Mach. Theory, 92, 464-483 (2015) · doi:10.1016/j.mechmachtheory.2015.06.006
[27] Bauchau, O. A.; Laulusa, A., Review of contemporary approaches for constraint enforcement in multibody systems, J. Comput. Nonlinear Dyn., 3, 1, 011005:1-011005:8 (2008)
[28] Yu, Q.; Chen, I. M., A direct violation correction method in numerical simulation of constrained multibody systems, Comput. Mech., 26, 1, 52-57 (2000) · Zbl 0965.70009 · doi:10.1007/s004660000149
[29] Blajer, W., A geometric unification of constrained system dynamics, Multibody Syst. Dyn., 1, 1, 3-21 (1997) · Zbl 0905.70008 · doi:10.1023/A:1009759106323
[30] Zhang, J.; Liu, D.; Liu, Y., A constraint violation suppressing formulation for spatial multibody dynamics with singular mass matrix, Multibody Syst. Dyn., 36, 1, 87-110 (2016) · Zbl 1372.70028 · doi:10.1007/s11044-015-9458-7
[31] Eich, E., Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints, SIAM J. Numer. Anal., 30, 5, 1467-1482 (1993) · Zbl 0785.65079 · doi:10.1137/0730076
[32] Yoon, S.; Howe, R. M.; Greenwood, D. T., Geometric elimination of constraint violations in numerical simulation of Lagrangian equations, J. Mech. Des., 116, 4, 1058-1064 (1994) · doi:10.1115/1.2919487
[33] Blajer, W., Elimination of constraint violation and accuracy aspects in numerical simulation of multibody systems, Multibody Syst. Dyn., 7, 3, 265-284 (2002) · Zbl 1007.70006 · doi:10.1023/A:1015285428885
[34] García de Jalón, J.; Gutiérrez-López, M. D., Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraint forces, Multibody Syst. Dyn., 30, 3, 311-341 (2013) · Zbl 1274.70010 · doi:10.1007/s11044-013-9358-7
[35] Blajer, W., An orthonormal tangent space method for constrained multibody systems, Comput. Methods Appl. Mech. Eng., 121, 1-4, 45-57 (1995) · Zbl 0849.70002 · doi:10.1016/0045-7825(94)00682-D
[36] Wojtyra, M.; Frączek, J., Comparison of selected methods of handling redundant constraints in multibody systems simulations, J. Comput. Nonlinear Dyn., 8, 2, 021007:1-021007:9 (2012)
[37] Aghili, F.; Piedboeuf, J. C., Simulation of motion of constrained multibody systems based on projection operator, Multibody Syst. Dyn., 10, 1, 3-16 (2003) · Zbl 1137.70329 · doi:10.1023/A:1024584323751
[38] Marques, F.; Souto, A. P.; Flores, P., On the constraints violation in forward dynamics of multibody systems, Multibody Syst. Dyn., 39, 4, 385-419 (2016) · Zbl 1377.70025 · doi:10.1007/s11044-016-9530-y
[39] Bayo, E.; Jalon, J. G.D.; Sema, M. A., A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems, Comput. Methods Appl. Mech. Eng., 71, 2, 183-195 (1988) · Zbl 0666.70021 · doi:10.1016/0045-7825(88)90085-0
[40] Blajer, W., Augmented Lagrangian formulation: geometrical interpretation and application to systems with singularities and redundancy, Multibody Syst. Dyn., 8, 2, 141-159 (2002) · Zbl 1022.70004 · doi:10.1023/A:1019581227898
[41] Neto, M. A.; Ambrósio, J., Stabilization methods for the integration of DAE in the presence of redundant constraints, Multibody Syst. Dyn., 10, 1, 81-105 (2003) · Zbl 1137.70303 · doi:10.1023/A:1024567523268
[42] Kim, S. S.; Vanderploeg, M. J., QR decomposition for state space representation of constrained mechanical dynamic systems, J. Mech. Transm. Autom. Des., 108, 2, 183-188 (1986) · doi:10.1115/1.3260800
[43] Nikravesh, P. E., Computer-Aided Analysis of Mechanical Systems (1988), Englewood Cliffs: Prentice Hall, Englewood Cliffs
[44] Haug, E. J., Computer Aided Kinematics and Dynamics of Mechanical Systems (1989), Boston: Allyn and Bacon, Boston
[45] Greenwood, D. T., Principles of Dynamics (1965), Englewood Cliffs: Prentice Hall, Englewood Cliffs
[46] Golub, G. H., Numerical methods for solving linear least square problems, Numer. Math., 7, 3, 206-216 (1965) · Zbl 0142.11502 · doi:10.1007/BF01436075
[47] Businger, P.; Golub, G. H., Linear least square solutions by householder transformations, Numer. Math., 7, 1, 269-276 (1965) · Zbl 0142.11503 · doi:10.1007/BF01436084
[48] Qi, Z. H.; Xu, Y. S.; Luo, X. M.; Yao, S. J., Recursive formulations for multibody systems with frictional joints based on the interaction between bodies, Multibody Syst. Dyn., 24, 2, 133-166 (2010) · Zbl 1376.70016 · doi:10.1007/s11044-010-9213-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.