×

Nonperturbative properties of Yang-Mills theories. (English) Zbl 1472.81166

Summary: Yang-Mills theories are an important building block of the standard model and in particular of quantum chromodynamics. Its correlation functions describe the behavior of its elementary particles, the gauge bosons. In quantum chromodynamics, the correlation functions of the gluons are basic ingredients for calculations of hadrons from bound state equations or properties of its phase diagram with functional methods. Correlation functions of gluons are defined only in a gauge fixed setting. The focus of many studies is the Landau gauge which has some features that alleviate calculations. I discuss recent results of correlation functions in this gauge obtained from their equations of motions. Besides the four-dimensional case also two and three dimensions are treated, since the effects of truncations, viz., the procedure to render the infinitely large system of equations finite, can be studied more directly in these cases. In four dimensions, the anomalous running of dressing functions plays a special role and it is explained how resummation is realized in the case of Dyson-Schwinger equations. Beyond the Landau gauge other gauges can provide additional insights or can alleviate the development of new methods. Some aspects or ideas are more easily accessible in alternative gauges and the results presented here for linear covariant gauges, the Coulomb gauge and the maximally Abelian gauge help to refine our understanding of Yang-Mills theories.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81V22 Unified quantum theories
81V05 Strong interaction, including quantum chromodynamics
81V35 Nuclear physics
81V73 Bosonic systems in quantum theory

References:

[1] Marciano, W. J.; Pagels, H., Quantum chromodynamics: A review, Phys. Rep., 36, 137 (1978)
[2] Brambilla, N., QCD And strongly coupled gauge theories: Challenges and perspectives, Eur. Phys. J. C, 74, 10, 2981 (2014), arXiv:1404.3723 [hep-ph]
[3] Gross, D. J.; Wilczek, F., Ultraviolet behavior of nonabelian gauge theories, Phys. Rev. Lett., 30, 1343-1346 (1973)
[4] Politzer, H. D., Reliable perturbative results for strong interactions?, Phys. Rev. Lett., 30, 1346-1349 (1973)
[5] Nash, T.; Yamanouchi, T.; Nease, D.; Sculli, J., A search for fractionally charged quarks produced by 200-GeV and 300-GeV proton - Nuclear interactions, Phys. Rev. Lett., 32, 858-862 (1974)
[6] Antreasyan, D.; Cocconi, G.; Cronin, J. W.; Frisch, H. J.; Olive, K. A.; Shochet, M. J.; Kluberg, L.; Mueller, J.; Piroue, P. A.; Sumner, R. L., Search for quarks produced with large transverse momentum in 400-GeV proton-nucleus collisions, Phys. Rev. Lett., 39, 513-515 (1977)
[7] Stevenson, M. L., A search for massive, longlived, fractionally charged particles produced by 300-GeV protons, Phys. Rev. D, 20, 82 (1979)
[8] Bergsma, F., Experimental limits on the production of fractionally charged particles in proton - Nucleus and neutrino - Nucleus collisions, Z. Phys. C, 24, 217 (1984)
[9] Delgado, R. L.; Hidalgo-Duque, C.; Llanes-Estrada, F. J., To what extent is gluon confinement an empirical fact?, Few Body Syst., 54, 1705-1717 (2013), arXiv:1106.2462 [hep-ph]
[10] Alkofer, R.; Greensite, J., Quark confinement: The hard problem of hadron physics, J. Phys. G, 34, S3 (2007), arXiv:hep-ph/0610365
[11] Greensite, J., The confinement problem in lattice gauge theory, Prog. Part. Nucl. Phys., 51, 1 (2003), arXiv:hep-lat/0301023
[12] Wilson, K. G., Confinement of quarks, Phys. Rev. D, 10, 2445-2459 (1974)
[13] Colangelo, G., Review of lattice results concerning low energy particle physics, Eur. Phys. J. C, 71, 1695 (2011), arXiv:1011.4408 [hep-lat]
[14] Gattringer, C.; Lang, C. B., Quantum chromodynamics on the lattice, Lecture Notes in Phys., 788, 1-343 (2010)
[15] Fodor, Z.; Hoelbling, C., Light hadron masses from lattice QCD, Rev. Modern Phys., 84, 449 (2012), arXiv:1203.4789 [hep-lat]
[16] Aoki, S., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C, 77, 2, 112 (2017), arXiv:1607.00299 [hep-lat]
[17] Borsanyi, S.; Fodor, Z.; Hoelbling, C.; Katz, S. D.; Krieg, S.; Szabo, K. K., Full result for the QCD equation of state with 2+1 flavors, Phys. Lett. B, 730, 99-104 (2014), arXiv:1309.5258 [hep-lat]
[18] Bazavov, A., Equation of state in ( 2+1 )-flavor QCD, Phys. Rev. D, 90, Article 094503 pp. (2014), arXiv:1407.6387 [hep-lat]
[19] de Forcrand, P., Simulating QCD at finite density, PoS LAT2009, 010 (2009), arXiv:1005.0539 [hep-lat]
[20] Alkofer, R.; von Smekal, L., The infrared behavior of QCD Green’s functions: Confinement, dynamical symmetry breaking, and hadrons as relativistic bound states, Phys. Rep., 353, 281 (2001), arXiv:hep-ph/0007355 · Zbl 0988.81551
[21] Bashir, A.; Chang, L.; Cloet, I. C.; El-Bennich, B.; Liu, Y.-X.; Roberts, C.; C. D.; Tandy, P., Collective perspective on advances in Dyson-Schwinger equation QCD, Commun. Theor. Phys., 58, 79-134 (2012), arXiv:1201.3366 [nucl-th] · Zbl 1263.81267
[22] Eichmann, G.; Sanchis-Alepuz, H.; Williams, R.; Alkofer, R.; Fischer, C. S., Baryons as relativistic three-quark bound states, Prog. Part. Nucl. Phys., 91, 1-100 (2016), arXiv:1606.09602 [hep-ph]
[23] M.Q. Huber, C.S. Fischer, H. Sanchis-Alepuz, Spectrum of scalar and pseudoscalar glueballs from functional methods, arXiv:2004.00415 [hep-ph].
[24] Huber, M. Q., Correlation functions of Landau gauge Yang-Mills theory, Phys. Rev. D, 101, 11, Article 114009 pp. (2020), arXiv:2003.13703 [hep-ph]
[25] Fritzsch, H.; Gell-Mann, M.; Leutwyler, H., Advantages of the color octet gluon picture, Phys. Lett. B, 47, 365-368 (1973)
[26] Yang, C.-N.; Mills, R. L., Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev., 96, 191-195 (1954) · Zbl 1378.81075
[27] Faddeev, L. D.; Popov, V. N., Feynman diagrams for the Yang-Mills field, Phys. Lett. B, 25, 29-30 (1967)
[28] Gribov, V., Quantization of nonabelian gauge theories, Nuclear Phys. B, 139, 1 (1978)
[29] Singer, I. M., Some remarks on the Gribov ambiguity, Comm. Math. Phys., 60, 7-12 (1978) · Zbl 0379.53009
[30] Huffel, H.; Markovic, D., Perturbative Yang-Mills theory without Faddeev-Popov ghost fields, Phys. Lett. B, 780, 418-421 (2018), arXiv:1712.10302 [hep-th] · Zbl 1390.81326
[31] Becchi, C.; Rouet, A.; Stora, R., Renormalization of gauge theories, Ann. Physics, 98, 287-321 (1976)
[32] Becchi, C.; Rouet, A.; Stora, R., Renormalization of the abelian Higgs-Kibble model, Comm. Math. Phys., 42, 127-162 (1975)
[33] I.V. Tyutin, Gauge Invariance in Field Theory and Statistical Physics in Operator Formalism, arXiv:0812.0580 [hep-th].
[34] Kugo, T.; Ojima, I., Local covariant operator formalism of nonabelian gauge theories and quark confinement problem, Progr. Theoret. Phys. Suppl., 66, 1 (1979)
[35] Piguet, O.; Sorella, S. P., Algebraic renormalization: Perturbative renormalization, symmetries and anomalies, Lect. Notes Phys. Math., 28, 1-134 (1995) · Zbl 0845.58069
[36] Nakanishi, N., Indefinite metric quantum field theory, Progr. Theoret. Phys. Suppl., 51, 1-95 (1972)
[37] Lautrup, B., Canonical quantum electrodynamcis in covariant gauges, Kong. Dan. Vid. Sel. Mat. Fys. Med., 35, 11 (1967)
[38] Kugo, T.; Uehara, S., General procedure of gauge fixing based on BRS invariance principle, Nuclear Phys. B, 197, 378-384 (1982)
[39] Wright, M. C.M., Green function or Green’s function?, Nat. Phys., 2, 10, 646 (2006)
[40] Eichmann, G.; Fischer, C. S.; Heupel, W., Four-point functions and the permutation group S4, Phys. Rev. D, 92, 5, Article 056006 pp. (2015), arXiv:1505.06336 [hep-ph]
[41] Salam, A., Renormalizable electrodynamics of vector mesons, Phys. Rev., 130, 1287-1290 (1963) · Zbl 0115.44602
[42] Salam, A.; Delbourgo, R., Renormalizable electrodynamics of scalar and vector mesons. II, Phys. Rev., 135, B1398-B1427 (1964)
[43] Delbourgo, R.; West, P. C., A gauge covariant approximation to quantum electrodynamics, J. Phys. A, 10, 1049 (1977)
[44] Delbourgo, R.; West, P. C., Infrared behavior of a gauge covariant approximation, Phys. Lett. B, 72, 96-98 (1977)
[45] Aguilar, A. C.; Papavassiliou, J., Chiral symmetry breaking with lattice propagators, Phys. Rev. D, 83, Article 014013 pp. (2011), arXiv:1010.5815 [hep-ph]
[46] Rojas, E.; de Melo, J.; El-Bennich, B.; Oliveira, O.; Frederico, T., On the quark-gluon vertex and quark-ghost kernel: combining lattice simulations with Dyson-Schwinger equations, J. High Energy Phys., 1310, 193 (2013), arXiv:1306.3022 [hep-ph]
[47] Aguilar, A.; Cardona, J.; Ferreira, M.; Papavassiliou, J., Quark gap equation with non-abelian Ball-Chiu vertex, Phys. Rev. D, 98, 1, Article 014002 pp. (2018), arXiv:1804.04229 [hep-ph]
[48] Aguilar, A. C.; Binosi, D.; Ibañez, D.; Papavassiliou, J., New method for determining the quark-gluon vertex, Phys. Rev. D, 90, 6, Article 065027 pp. (2014), arXiv:1405.3506 [hep-ph]
[49] Aguilar, A. C.; Cardona, J. C.; Ferreira, M. N.; Papavassiliou, J., Non-abelian Ball-Chiu vertex for arbitrary Euclidean momenta, Phys. Rev. D, 96, 1, Article 014029 pp. (2017), arXiv:1610.06158 [hep-ph]
[50] Oliveira, O.; Frederico, T.; de Paula, W.; de Melo, J., Exploring the quark-gluon vertex with Slavnov-Taylor identities and lattice simulations, Eur. Phys. J. C, 78, 7, 553 (2018), arXiv:1807.00675 [hep-ph]
[51] Aguilar, A.; Ferreira, M.; Figueiredo, C.; Papavassiliou, J., Nonperturbative structure of the ghost-gluon kernel, Phys. Rev. D, 99, 3, Article 034026 pp. (2019), arXiv:1811.08961 [hep-ph]
[52] Aguilar, A.; Ferreira, M.; Figueiredo, C.; Papavassiliou, J., Nonperturbative Ball-Chiu construction of the three-gluon vertex, Phys. Rev. D, 99, 9, Article 094010 pp. (2019), arXiv:1903.01184 [hep-ph]
[53] Fischer, C. S.; Maas, A.; Pawlowski, J. M., On the infrared behavior of Landau gauge Yang-Mills theory, Ann. Physics, 324, 2408-2437 (2009), arXiv:0810.1987 [hep-ph] · Zbl 1176.81082
[54] Carrington, M.; Guo, Y., Techniques for n-particle irreducible effective theories, Phys. Rev. D, 83, Article 016006 pp. (2011), arXiv:1010.2978 [hep-ph]
[55] Eichmann, G.; Williams, R.; Alkofer, R.; Vujinovic, M., The three-gluon vertex in Landau gauge, Phys. Rev. D, 89, Article 105014 pp. (2014), arXiv:1402.1365 [hep-ph]
[56] Lerche, C.; von Smekal, L., On the infrared exponent for gluon and ghost propagation in Landau gauge QCD, Phys. Rev. D, 65, Article 125006 pp. (2002), arXiv:hep-ph/0202194
[57] Smolyakov, N. V., Furry theorem for nonabelian gauge Lagrangians, Theoret. Math. Phys.. Theoret. Math. Phys., Teor. Mat. Fiz., 50, 344-228 (1982)
[58] Peccei, R., Discrete and global symmetries in particle physics, Lecture Notes in Phys., 521, 1-50 (1999), arXiv:hep-ph/9807516
[59] Blum, A. L.; Alkofer, R.; Huber, M. Q.; Windisch, A., Unquenching the three-gluon vertex: A status report, Acta Phys. Polon. Supp., 8, 2, 321 (2015), arXiv:1506.04275 [hep-ph]
[60] Ball, J. S.; Chiu, T.-W., Analytic properties of the vertex function in gauge theories. 1, Phys. Rev. D, 22, 2542 (1980)
[61] Hopfer, M.; Windisch, A.; Alkofer, R., The quark-gluon vertex in Landau gauge QCD, PoS ConfinementX, 073 (2012), arXiv:1301.3672 [hep-ph]
[62] Williams, R., The quark-gluon vertex in Landau gauge bound-state studies, Eur. Phys. J.A, 51, 5, 57 (2015), arXiv:1404.2545 [hep-ph]
[63] Hopfer, M., Gauge Theories: QCD & beyond (2014), Graz U., http://unipub.uni-graz.at/obvugrhs/content/titleinfo/269085
[64] Windisch, A., Features of Strong Quark Correlations At Vanishing and Non-Vanishing Density (2014), Graz U., http://unipub.uni-graz.at/obvugrhs/content/titleinfo/242468
[65] Mitter, M.; Pawlowski, J. M.; Strodthoff, N., Chiral symmetry breaking in continuum QCD, Phys. Rev. D, 91, Article 054035 pp. (2015), arXiv:1411.7978 [hep-ph]
[66] Williams, R.; Fischer, C. S.; Heupel, W., Light mesons in QCD and unquenching effects from the 3PI effective action, Phys. Rev. D, 93, 3, Article 034026 pp. (2016), arXiv:1512.00455 [hep-ph]
[67] Cyrol, A. K.; Mitter, M.; Pawlowski, J. M.; Strodthoff, N., Nonperturbative quark, gluon, and meson correlators of unquenched QCD, Phys. Rev. D, 97, 5, Article 054006 pp. (2018), arXiv:1706.06326 [hep-ph]
[68] Pascual, P.; Tarrach, R., Slavnov-Taylor identities in Weinberg’s renormalization scheme, Nuclear Phys. B, 174, 123 (1980)
[69] Driesen, L.; Fromm, J.; Kuhrs, J.; Stingl, M., Extended iterative scheme for QCD: Three point vertices, Eur. Phys. J. A, 4, 381-400 (1999), arXiv:hep-th/9808152 [hep-th]
[70] Driesen, L.; Stingl, M., Extended iterative scheme for QCD: The four gluon vertex, Eur. Phys. J. A, 4, 401-419 (1999), arXiv:hep-th/9808155 [hep-th]
[71] Cyrol, A. K.; Huber, M. Q.; von Smekal, L., A Dyson-Schwinger study of the four-gluon vertex, Eur. Phys. J. C, 75, 102 (2015), arXiv:1408.5409 [hep-ph]
[72] Dyson, F. J., The S matrix in quantum electrodynamics, Phys. Rev., 75, 1736-1755 (1949) · Zbl 0033.14201
[73] Schwinger, J. S., On the Green’s functions of quantized fields. 1, Proc. Natl. Acad. Sci., 37, 452-455 (1951) · Zbl 0044.43001
[74] Schwinger, J. S., On the Green’s functions of quantized fields. 2, Proc. Natl. Acad. Sci., 37, 455-459 (1951) · Zbl 0044.43001
[75] Cornwall, J. M., Dynamical mass generation in continuum QCD, Phys. Rev. D, 26, 1453 (1982)
[76] Cornwall, J. M.; Papavassiliou, J., Gauge invariant three gluon vertex in QCD, Phys. Rev. D, 40, 3474 (1989)
[77] Binosi, D.; Papavassiliou, J., The pinch technique to all orders, Phys. Rev. D, 66, Article 111901 pp. (2002), arXiv:hep-ph/0208189 [hep-ph]
[78] Binosi, D.; Papavassiliou, J., Pinch technique selfenergies and vertices to all orders in perturbation theory, J. Phys. G, 30, 203 (2004), arXiv:hep-ph/0301096 [hep-ph]
[79] Abbott, L. F., The background field method beyond one loop, Nuclear Phys. B, 185, 189-203 (1981)
[80] Abbott, L. F., Introduction to the background field method, Acta Phys. Polon. B, 13, 33 (1982)
[81] Aguilar, A. C.; Papavassiliou, J., Gluon mass generation in the PT-BFM scheme, J. High Energy Phys., 0612, 012 (2006), arXiv:hep-ph/0610040 [hep-ph]
[82] Binosi, D.; Papavassiliou, J., Gauge-invariant truncation scheme for the Schwinger-Dyson equations of QCD, Phys. Rev. D, 77, Article 061702 pp. (2008), arXiv:0712.2707 [hep-ph]
[83] Binosi, D.; Papavassiliou, J., New Schwinger-Dyson equations for non-Abelian gauge theories, J. High Energy Phys., 11, 063 (2008), arXiv:0805.3994 [hep-ph]
[84] Binosi, D.; Papavassiliou, J., Pinch technique: Theory and applications, Phys. Rep., 479, 1-152 (2009), arXiv:0909.2536 [hep-ph]
[85] Aguilar, A.; Binosi, D.; Papavassiliou, J., Gluon and ghost propagators in the Landau gauge: Deriving lattice results from Schwinger-Dyson equations, Phys. Rev. D, 78, Article 025010 pp. (2008), arXiv:0802.1870 [hep-ph]
[86] Aguilar, A. C.; Papavassiliou, J., Gluon mass generation without seagull divergences, Phys. Rev. D, 81, Article 034003 pp. (2010), arXiv:0910.4142 [hep-ph]
[87] Rodriguez-Quintero, J., On the massive gluon propagator, the PT-BFM scheme and the low-momentum behaviour of decoupling and scaling DSE solutions, J. High Energy Phys., 01, 105 (2011), arXiv:1005.4598 [hep-ph] · Zbl 1214.81307
[88] Aguilar, A.; Binosi, D.; Papavassiliou, J., The dynamical equation of the effective gluon mass, Phys. Rev. D, 84, Article 085026 pp. (2011), arXiv:1107.3968 [hep-ph]
[89] Aguilar, A.; Binosi, D.; Papavassiliou, J., Gluon mass through ghost synergy, J. High Energy Phys., 1201, 050 (2012), arXiv:1108.5989 [hep-ph] · Zbl 1306.81320
[90] D. Binosi, D. Ibáñez, J. Papavassiliou, The all-order equation of the effective gluon mass, arXiv:1208.1451 [hep-ph]. · Zbl 1097.81816
[91] Aguilar, A.; Binosi, D.; Ibáñez, D.; Papavassiliou, J., Effects of divergent ghost loops on the Green’s functions of QCD, Phys. Rev. D, 89, Article 085008 pp. (2014), arXiv:1312.1212 [hep-ph]
[92] Aguilar, A. C.; Binosi, D.; Papavassiliou, J., Schwinger mechanism in linear covariant gauges, Phys. Rev. D, 95, 3, Article 034017 pp. (2017), arXiv:1611.02096 [hep-ph]
[93] Aguilar, A.; Ferreira, M.; Figueiredo, C.; Papavassiliou, J., Gluon mass scale through nonlinearities and vertex interplay, Phys. Rev. D, 100, 9, Article 094039 pp. (2019), arXiv:1909.09826 [hep-ph]
[94] Aguilar, A.; De Soto, F.; Ferreira, M.; Papavassiliou, J.; Rodrí guez Quintero, J.; Zafeiropoulos, S., Gluon propagator and three-gluon vertex with dynamical quarks, Eur. Phys. J. C, 80, 2, 154 (2020), arXiv:1912.12086 [hep-ph]
[95] Pfeffer, T.; Pollet, L., A stochastic root finding approach: the homotopy analysis method applied to Dyson-Schwinger equations, New J. Phys., 19, 4, Article 043005 pp. (2017), arXiv:1701.02680 [cond-mat.stat-mech] · Zbl 1514.81211
[96] T. Pfeffer, L. Pollet, Full and unbiased solution of the Dyson-Schwinger equation in the functional integro-differential representation, arXiv:1803.00961 [cond-mat.stat-mech].
[97] Cornwall, J. M.; Jackiw, R.; Tomboulis, E., Effective action for composite operators, Phys. Rev. D, 10, 2428-2445 (1974) · Zbl 1110.81324
[98] Berges, J., N-PI effective action techniques for gauge theories, Phys. Rev. D, 70, Article 105010 pp. (2004), arXiv:hep-ph/0401172
[99] Jackiw, R., Functional evaluation of the effective potential, Phys. Rev. D, 9, 1686 (1974)
[100] Diehl, S.; Floerchinger, S.; Gies, H.; Pawlowski, J. M.; Wetterich, C., Functional renormalization group approach to the BCS-BEC crossover, Annalen Phys., 522, 615-656 (2010), arXiv:0907.2193 [cond-mat.quant-gas] · Zbl 1198.82026
[101] Diehl, S.; Gies, H.; Pawlowski, J. M.; Wetterich, C., Flow equations for the BCS-BEC crossover, Phys. Rev. A, 76, Article 021602 pp. (2007), arXiv:cond-mat/0701198
[102] Boettcher, I.; Pawlowski, J. M.; Diehl, S., Ultracold atoms and the functional renormalization group, Nucl. Phys. Proc. Suppl., 228, 63-135 (2012), arXiv:1204.4394 [cond-mat.quant-gas]
[103] Gies, H.; Synatschke, F.; Wipf, A., Supersymmetry breaking as a quantum phase transition, Phys. Rev. D, 80, Article 101701 pp. (2009), arXiv:0906.5492 [hep-th]
[104] Synatschke, F.; Braun, J.; Wipf, A., N=1 Wess Zumino Model in d=3 at zero and finite temperature, Phys. Rev. D, 81, Article 125001 pp. (2010), arXiv:1001.2399 [hep-th]
[105] Synatschke, F.; Gies, H.; Wipf, A., Phase diagram and fixed-point structure of two dimensional \(N = 1\) Wess-Zumino models, Phys. Rev. D, 80, Article 085007 pp. (2009), arXiv:0907.4229 [hep-th]
[106] Litim, D. F.; Mastaler, M. C.; Synatschke-Czerwonka, F.; Wipf, A., Critical behavior of supersymmetric O(N) models in the large-N limit, Phys. Rev. D, 84, Article 125009 pp. (2011), arXiv:1107.3011 [hep-th]
[107] Heilmann, M.; Litim, D. F.; Synatschke-Czerwonka, F.; Wipf, A., Phases of supersymmetric O(N) theories, Phys. Rev. D, 86, Article 105006 pp. (2012), arXiv:1208.5389 [hep-th]
[108] E. Manrique, M. Reuter, Bare vs. Effective Fixed Point Action in Asymptotic Safety: The Reconstruction Problem, arXiv:0905.4220 [hep-th]. Talk given at International Workshop on Continuum and Lattice Approaches to Quantum Gravity, Brighton, United Kingdom, 17-19 Sep 08.
[109] Reuter, M., Nonperturbative evolution equation for quantum gravity, Phys. Rev. D, 57, 971-985 (1998), arXiv:hep-th/9605030
[110] Reuter, M.; Saueressig, F., Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation, Phys. Rev. D, 65, Article 065016 pp. (2002), arXiv:hep-th/0110054
[111] Codello, A.; Percacci, R.; Rahmede, C., Ultraviolet properties of f(R)-gravity, Internat. J. Modern Phys. A, 23, 143-150 (2008), arXiv:0705.1769 [hep-th]
[112] Eichhorn, A.; Gies, H., Ghost anomalous dimension in asymptotically safe quantum gravity, Phys. Rev. D, 81, Article 104010 pp. (2010), arXiv:1001.5033 [hep-th]
[113] Eichhorn, A.; Gies, H.; Scherer, M. M., Asymptotically free scalar curvature-ghost coupling in quantum Einstein gravity, Phys. Rev. D, 80, Article 104003 pp. (2009), arXiv:0907.1828 [hep-th]
[114] Litim, D. F., Renormalisation group and the Planck scale, Philos. Trans. R. Soc. Lond. Ser. A, 369, 2759-2778 (2011), arXiv:1102.4624 [hep-th] · Zbl 1228.82028
[115] Folkerts, S.; Litim, D. F.; Pawlowski, J. M., Asymptotic freedom of Yang-Mills theory with gravity, Phys. Lett. B, 709, 234-241 (2012), arXiv:1101.5552 [hep-th]
[116] T. Denz, J.M. Pawlowski, M. Reichert, Towards apparent convergence in asymptotically safe quantum gravity, arXiv:1612.07315 [hep-th].
[117] Gies, H.; Knorr, B.; Lippoldt, S.; Saueressig, F., Gravitational two-loop counterterm is asymptotically safe, Phys. Rev. Lett., 116, 21, Article 211302 pp. (2016), arXiv:1601.01800 [hep-th]
[118] Bonanno, A.; Saueressig, F., Asymptotically safe cosmology - A status report, C. R. Phys., 18, 254-264 (2017), arXiv:1702.04137 [hep-th]
[119] A. Platania, F. Saueressig, Functional Renormalization Group flows on Friedman-Lemaître-Robertson-Walker backgrounds, arXiv:1710.01972 [hep-th]. · Zbl 1411.83032
[120] Gies, H.; Gneiting, C.; Sondenheimer, R., Higgs mass bounds from renormalization flow for a simple Yukawa model, Phys. Rev. D, 89, 4, Article 045012 pp. (2014), arXiv:1308.5075 [hep-ph]
[121] Gies, H.; Sondenheimer, R., Higgs mass bounds from renormalization flow for a Higgs-top-bottom model, Eur. Phys. J. C, 75, 2, 68 (2015), arXiv:1407.8124 [hep-ph]
[122] Borchardt, J.; Gies, H.; Sondenheimer, R., Global flow of the Higgs potential in a Yukawa model, Eur. Phys. J. C, 76, 8, 472 (2016), arXiv:1603.05861 [hep-ph]
[123] Gies, H.; Sondenheimer, R.; Warschinke, M., Impact of generalized Yukawa interactions on the lower Higgs mass bound, Eur. Phys. J. C, 77, 11, 743 (2017), arXiv:1707.04394 [hep-ph]
[124] Schaefer, B.-J.; Wambach, J., Renormalization group approach towards the QCD phase diagram, Phys. Part. Nucl., 39, 1025-1032 (2008), arXiv:hep-ph/0611191
[125] Schaefer, B.-J.; Wambach, J., Susceptibilities near the QCD (tri)critical point, Phys. Rev. D, 75, Article 085015 pp. (2007), arXiv:hep-ph/0603256
[126] Braun, J.; Gies, H.; Pawlowski, J. M., Quark confinement from color confinement, Phys. Lett. B, 684, 262-267 (2010), arXiv:0708.2413 [hep-th]
[127] Schaefer, B.-J.; Wagner, M., The three-flavor chiral phase structure in hot and dense QCD matter, Phys. Rev. D, 79, Article 014018 pp. (2009), arXiv:0808.1491 [hep-ph]
[128] Braun, J.; Haas, L. M.; Marhauser, F.; Pawlowski, J. M., Phase structure of two-flavor QCD at finite chemical potential, Phys. Rev. Lett., 106, Article 022002 pp. (2011), arXiv:0908.0008 [hep-ph]
[129] Herbst, T. K.; Pawlowski, J. M.; Schaefer, B.-J., The phase structure of the Polyakov-quark-meson model beyond mean field, Phys. Lett. B, 696, 58-67 (2011), arXiv:1008.0081 [hep-ph]
[130] Pawlowski, J. M., The QCD phase diagram: Results and challenges, AIP Conf.Proc., 1343, 75-80 (2011), arXiv:1012.5075 [hep-ph]
[131] L. Fister, J.M. Pawlowski, Yang-Mills correlation functions at finite temperature, arXiv:1112.5440 [hep-ph].
[132] Haas, L. M.; Stiele, R.; Braun, J.; Pawlowski, J. M.; Schaffner-Bielich, J., Improved Polyakov-loop potential for effective models from functional calculations, Phys. Rev. D, 87, Article 076004 pp. (2013), arXiv:1302.1993 [hep-ph]
[133] Herbst, T. K.; Mitter, M.; Pawlowski, J. M.; Schaefer, B.-J.; Stiele, R., Thermodynamics of QCD at vanishing density, Phys. Lett. B, 731, 248-256 (2014), arXiv:1308.3621 [hep-ph]
[134] Haas, M.; Fister, L.; Pawlowski, J. M., Gluon spectral functions and transport coefficients in Yang-Mills theory, Phys. Rev. D, 90, Article 091501 pp. (2014), arXiv:1308.4960 [hep-ph]
[135] Tripolt, R.-A.; von Smekal, L.; Wambach, J., Flow equations for spectral functions at finite external momenta, Phys. Rev. D, 90, 7, Article 074031 pp. (2014), arXiv:1408.3512 [hep-ph]
[136] Christiansen, N.; Haas, M.; Pawlowski, J. M.; Strodthoff, N., Transport coefficients in Yang-Mills theory and QCD, Phys. Rev. Lett., 115, 11, Article 112002 pp. (2015), arXiv:1411.7986 [hep-ph]
[137] Cyrol, A. K.; Mitter, M.; Pawlowski, J. M.; Strodthoff, N., Nonperturbative finite-temperature Yang-Mills theory, Phys. Rev. D, 97, 5, Article 054015 pp. (2018), arXiv:1708.03482 [hep-ph]
[138] Berges, J.; Tetradis, N.; Wetterich, C., Non-perturbative renormalization flow in quantum field theory and statistical physics, Phys. Rep., 363, 223-386 (2002), arXiv:hep-ph/0005122 · Zbl 0994.81077
[139] Pawlowski, J. M., Aspects of the functional renormalisation group, Ann. Physics, 322, 2831-2915 (2007), arXiv:hep-th/0512261 · Zbl 1132.81041
[140] Gies, H., Introduction to the functional RG and applications to gauge theories, Lecture Notes in Phys., 852, 287-348 (2012), arXiv:hep-ph/0611146 [hep-ph] · Zbl 1257.81058
[141] Wetterich, C., Exact evolution equation for the effective potential, Phys. Lett. B, 301, 90-94 (1993), arXiv:1710.05815
[142] Quandt, M.; Reinhardt, H.; Heffner, J., Covariant variational approach to Yang-Mills theory, Phys. Rev. D, 89, 6, Article 065037 pp. (2014), arXiv:1310.5950 [hep-th]
[143] Reinhardt, H.; Schleifenbaum, W., Hamiltonian approach to 1+1 dimensional Yang-Mills theory in Coulomb gauge, Ann. Physics, 324, 735-786 (2009), arXiv:0809.1764 [hep-th] · Zbl 1161.81021
[144] Campagnari, D. R.; Reinhardt, H., Non-Gaussian wave functionals in coulomb gauge Yang-Mills theory, Phys. Rev. D, 82, Article 105021 pp. (2010), arXiv:1009.4599 [hep-th]
[145] Schutte, D., Nonperturbative many body techniques applied to a Yang-Mills field theory, Phys. Rev. D, 31, 810-821 (1985)
[146] Szczepaniak, A. P.; Swanson, E. S., Coulomb gauge QCD, confinement, and the constituent representation, Phys. Rev. D, 65, Article 025012 pp. (2002), arXiv:hep-ph/0107078 [hep-ph]
[147] Feuchter, C.; Reinhardt, H., Variational solution of the Yang-Mills schrodinger equation in Coulomb gauge, Phys. Rev. D, 70, Article 105021 pp. (2004), arXiv:hep-th/0408236 [hep-th]
[148] Campagnari, D. R.; Reinhardt, H., The ghost-gluon vertex in hamiltonian Yang-Mills theory in Coulomb gauge, Phys. Lett. B, 707, 216-220 (2012), arXiv:1111.5476 [hep-th]
[149] Alkofer, R.; Huber, M. Q.; Schwenzer, K., Algorithmic derivation of Dyson-Schwinger equations, Comput. Phys. Comm., 180, 965-976 (2009), arXiv:0808.2939 [hep-th] · Zbl 1198.81010
[150] Wolfram, S., The Mathematica Book (2004), Wolfram Media and Cambridge University Press
[151] Huber, M. Q.; Schwenzer, K.; Alkofer, R., On the infrared scaling solution of SU(N) Yang-Mills theories in the maximally Abelian gauge, Eur. Phys. J. C, 68, 581-600 (2010), arXiv:0904.1873 [hep-th]
[152] Huber, M. Q.; Alkofer, R.; Sorella, S. P., Infrared analysis of Dyson-Schwinger equations taking into account the Gribov horizon in Landau gauge, Phys. Rev. D, 81, Article 065003 pp. (2010), arXiv:0910.5604 [hep-th]
[153] van Ritbergen, T.; Schellekens, A. N.; Vermaseren, J. A.M., Group theory factors for Feynman diagrams, Internat. J. Modern Phys. A, 14, 41-96 (1999), arXiv:hep-ph/9802376 · Zbl 0924.22017
[154] J.A.M. Vermaseren, New features of FORM, arXiv:math-ph/0010025.
[155] Kuipers, J.; Ueda, T.; Vermaseren, J. A.M.; Vollinga, J., FORM Version 4.0, Comput. Phys. Comm., 184, 1453-1467 (2013), arXiv:1203.6543 [cs.SC] · Zbl 1317.68286
[156] Kuipers, J.; Ueda, T.; Vermaseren, J. A.M., Code optimization in FORM, Comput. Phys. Comm., 189, 1-19 (2015), arXiv:1310.7007 [cs.SC] · Zbl 1344.65050
[157] B. Ruijl, T. Ueda, J. Vermaseren, FORM version 4.2, arXiv:1707.06453 [hep-ph].
[158] Mertig, R.; Bohm, M.; Denner, A., FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Comm., 64, 345-359 (1991)
[159] Shtabovenko, V.; Mertig, R.; Orellana, F., New developments in FeynCalc 9.0, Comput. Phys. Comm., 207, 432-444 (2016), arXiv:1601.01167 [hep-ph] · Zbl 1375.68227
[160] Shtabovenko, V., FeynHelpers: Connecting FeynCalc to FIRE and Package-X, Comput. Phys. Comm., 218, 48-65 (2017), arXiv:1611.06793 [physics.comp-ph] · Zbl 1411.81021
[161] Wiebusch, M., HEPMath 1.4: A mathematica package for semi-automatic computations in high energy physics, Comput. Phys. Comm., 195, 172-190 (2015), arXiv:1412.6102 [hep-ph]
[162] Jamin, M.; Lautenbacher, M. E., TRACER: Version 1.1: A mathematica package for gamma algebra in arbitrary dimensions, Comput. Phys. Comm., 74, 265-288 (1993)
[163] Cyrol, A. K.; Mitter, M.; Strodthoff, N., FormTracer - A mathematica tracing package using FORM, Comput. Phys. Commun., 219, 346-352 (2017), arXiv:1610.09331 [hep-ph] · Zbl 1411.22001
[164] Huber, M. Q.; Braun, J., Algorithmic derivation of functional renormalization group equations and Dyson-Schwinger equations, Comput. Phys. Comm., 183, 1290-1320 (2012), arXiv:1102.5307 [hep-th]
[165] Braun, J.; Leonhardt, M.; Pospiech, M., Fierz-complete NJL model study: Fixed points and phase structure at finite temperature and density, Phys. Rev. D, 96, 7, Article 076003 pp. (2017), arXiv:1705.00074 [hep-ph]
[166] Braun, J.; Leonhardt, M.; Pospiech, M., Fierz-complete NJL model study. II. Toward the fixed-point and phase structure of hot and dense two-flavor QCD, Phys. Rev. D, 97, 7, Article 076010 pp. (2018), arXiv:1801.08338 [hep-ph]
[167] Alkofer, R.; Maas, A.; Mian, W. A.; Mitter, M.; París-López, J.; Pawlowski, J. M.; Wink, N., Bound state properties from the functional renormalization group, Phys. Rev. D, 99, 5, Article 054029 pp. (2019), arXiv:1810.07955 [hep-ph]
[168] Eser, J.; Divotgey, F.; Mitter, M.; Rischke, D. H., Low-energy limit of the \(O ( 4 )\) quark-meson model from the functional renormalization group approach, Phys. Rev. D, 98, 1, Article 014024 pp. (2018), arXiv:1804.01787 [hep-ph]
[169] J. Braun, M. Leonhardt, M. Pospiech, Fierz-complete NJL model study III: Emergence from quark-gluon dynamics, arXiv:1909.06298 [hep-ph].
[170] Divotgey, F.; Eser, J.; Mitter, M., Dynamical generation of low-energy couplings from quark-meson fluctuations, Phys. Rev. D, 99, 5, Article 054023 pp. (2019), arXiv:1901.02472 [hep-ph]
[171] Alkofer, R.; Huber, M. Q.; Schwenzer, K., Infrared behavior of three-point functions in Landau Gauge Yang-Mills theory, Eur. Phys. J. C, 62, 761-781 (2009), arXiv:0812.4045 [hep-ph] · Zbl 1189.81141
[172] Fister, L.; Alkofer, R.; Schwenzer, K., On the infrared behavior of Landau Gauge Yang-Mills theory with a fundamentally charged scalar field, Phys. Lett. B, 688, 237-243 (2010), arXiv:1003.1668 [hep-th]
[173] Macher, V.; Maas, A.; Alkofer, R., A study of the influence of the gauge group on the Dyson-Schwinger equations for Scalar-Yang-Mills systems, Internat. J. Modern Phys. A, 27, Article 1250098 pp. (2012), arXiv:1106.5381 [hep-ph] · Zbl 1260.81173
[174] Alkofer, N.; Alkofer, R., Features of ghost-gluon and ghost-quark bound states related to BRST quartets, Phys. Lett. B, 702, 158-163 (2011), arXiv:1102.2753 [hep-th]
[175] Huber, M. Q.; Maas, A.; von Smekal, L., Two- and three-point functions in two-dimensional Landau-gauge Yang-Mills theory: Continuum results, J. High Energy Phys., 1211, 035 (2012), arXiv:1207.0222 [hep-th]
[176] Huber, M. Q.; von Smekal, L., On the influence of three-point functions on the propagators of Landau gauge Yang-Mills theory, J. High Energy Phys., 1304, 149 (2013), arXiv:1211.6092 [hep-th] · Zbl 1342.81683
[177] Blum, A.; Huber, M. Q.; Mitter, M.; von Smekal, L., Gluonic three-point correlations in pure Landau gauge QCD, Phys. Rev. D, 89 (2014), 061703(R). arXiv:1401.0713 [hep-ph]
[178] Huber, M. Q.; Campagnari, D. R.; Reinhardt, H., Vertex functions of Coulomb gauge Yang-Mills theory, Phys. Rev. D, 91, 2, Article 025014 pp. (2015), arXiv:1410.4766 [hep-ph]
[179] Huber, M. Q.; von Smekal, L., Spurious divergences in Dyson-Schwinger equations, J. High Energy Phys., 1406, 015 (2014), arXiv:1404.3642 [hep-ph]
[180] J. Braun, L. Fister, J.M. Pawlowski, F. Rennecke, From Quarks and Gluons to Hadrons: Chiral Symmetry Breaking in Dynamical QCD, arXiv:1412.1045 [hep-ph].
[181] Rennecke, F., Vacuum structure of vector mesons in QCD, Phys. Rev. D, 92, 7, Article 076012 pp. (2015), arXiv:1504.03585 [hep-ph]
[182] Huber, M. Q., Gluon and ghost propagators in linear covariant gauges, Phys. Rev. D, 91, 8, Article 085018 pp. (2015), arXiv:1502.04057 [hep-ph]
[183] Huber, M. Q., Correlation functions of three-dimensional Yang-Mills theory from Dyson-Schwinger equations, Phys. Rev. D, 93, 8, Article 085033 pp. (2016), arXiv:1602.02038 [hep-th]
[184] Cyrol, A. K.; Fister, L.; Mitter, M.; Pawlowski, J. M.; Strodthoff, N., Landau gauge Yang-Mills correlation functions, Phys. Rev. D, 94, 5, Article 054005 pp. (2016), arXiv:1605.01856 [hep-ph]
[185] Huber, M. Q., An exploratory study of Yang-Mills three-point functions at non-zero temperature, EPJ Web Conf., 137, 07009 (2017), arXiv:1611.06136 [hep-ph]
[186] Contant, R.; Huber, M. Q., Phase structure and propagators at nonvanishing temperature for QCD and QCD-like theories, Phys. Rev. D, 96, 7, Article 074002 pp. (2017), arXiv:1706.00943 [hep-ph]
[187] J.M. Pawlowski, N. Strodthoff, N. Wink, Finite temperature spectral functions in the O(N)-model, arXiv:1711.07444 [hep-th].
[188] Huber, M. Q., On non-primitively divergent vertices of Yang-Mills theory, Eur. Phys. J. C, 77, 11, 733 (2017), arXiv:1709.05848 [hep-ph]
[189] L. Corell, A.K. Cyrol, M. Mitter, J.M. Pawlowski, N. Strodthoff, Correlation functions of three-dimensional Yang-Mills theory from the FRG, arXiv:1803.10092 [hep-ph].
[190] M. Leonhardt, M. Pospiech, B. Schallmo, J. Braun, C. Drischler, K. Hebeler, A. Schwenk, Symmetric nuclear matter from the strong interaction, arXiv:1907.05814 [nucl-th].
[191] O. Hajizadeh, M.Q. Huber, A. Maas, J.M. Pawlowski, Exploring the Tan contact term in Yang-Mills theory, arXiv:1909.12727 [hep-ph].
[192] Contant, R.; Huber, M. Q., Dense two-color QCD from Dyson-Schwinger equations, Phys. Rev. D, 101, 1, 014016 (2020), arXiv:1909.12796
[193] Janssen, L.; Gies, H., Critical behavior of the (2+1)-dimensional Thirring model, Phys. Rev. D, 86, 105007 (2012), arXiv:1208.3327 [hep-th]
[194] Strodthoff, N., Self-consistent spectral functions in the O(N) model from the functional renormalization group, Phys. Rev. D, 95, 7, Article 076002 pp. (2017), arXiv:1611.05036 [hep-th]
[195] Huber, M. Q.; Cyrol, A. K.; Pawlowski, J. M., DoFun 3.0: Functional equations in Mathematica, Comput. Phys. Commun., 248, 107058 (2020), arXiv:1908.02760 [hep-ph] · Zbl 07678484
[196] Atkinson, D.; Bloch, J. C.R., Running coupling in non-perturbative QCD. I: Bare vertices and y-max approximation, Phys. Rev. D, 58, Article 094036 pp. (1998), arXiv:hep-ph/9712459
[197] Maas, A., Solving a set of truncated Dyson-Schwinger equations with a globally converging method, Comput. Phys. Comm., 175, 167-179 (2006), arXiv:hep-ph/0504110 [hep-ph] · Zbl 1196.81069
[198] Huber, M. Q.; Mitter, M., CrasyDSE: A Framework for solving Dyson-Schwinger equations, Comput. Phys. Comm., 183, 2441-2457 (2012), arXiv:1112.5622 [hep-th] · Zbl 1302.81004
[199] H. Sanchis-Alepuz, R. Williams, Recent developments in bound-state calculations using the Dyson-Schwinger and Bethe-Salpeter equations, arXiv:1710.04903 [hep-ph].
[200] Rivers, R. J., Path Integrals Methods in Quantum Field Theory (1988), Cambridge University Press: Cambridge University Press Cambridge
[201] Pawlowski, J. M.; Strodthoff, N., Real time correlation functions and the functional renormalization group, Phys. Rev. D, 92, 9, Article 094009 pp. (2015), arXiv:1508.01160 [hep-ph]
[202] Zwanziger, D., Fundamental modular region, Boltzmann factor and area law in lattice gauge theory, Nuclear Phys. B, 412, 657-730 (1994) · Zbl 1007.81515
[203] Henty, D. S.; Oliveira, O.; Parrinello, C.; Ryan, S., Soft covariant gauges on the lattice, Phys. Rev. D, 54, 6923-6927 (1996), arXiv:hep-lat/9607014 [hep-lat]
[204] Cucchieri, A., Gribov copies in the minimal Landau gauge: The influence on gluon and ghost propagators, Nuclear Phys. B, 508, 353-370 (1997), arXiv:hep-lat/9705005
[205] Silva, P.; Oliveira, O., Gribov copies, lattice QCD and the gluon propagator, Nuclear Phys. B, 690, 177-198 (2004), arXiv:hep-lat/0403026 [hep-lat]
[206] Bogolubsky, I. L.; Burgio, G.; Müller-Preussker, M.; Mitrjushkin, V. K., Landau gauge ghost and gluon propagators in SU(2) lattice gauge theory: Gribov ambiguity revisited, Phys. Rev. D, 74, Article 034503 pp. (2006), arXiv:hep-lat/0511056
[207] Bogolubsky, I. L., Improved Landau gauge fixing and the suppression of finite-volume effects of the lattice gluon propagator, Phys. Rev. D, 77, Article 014504 pp. (2008), arXiv:0707.3611 [hep-lat]
[208] Bornyakov, V. G.; Mitrjushkin, V. K.; Müller-Preussker, M., Infrared behavior and Gribov ambiguity in SU(2) lattice gauge theory, Phys. Rev. D, 79, Article 074504 pp. (2009), arXiv:0812.2761 [hep-lat]
[209] Maas, A., More on Gribov copies and propagators in Landau-gauge Yang-Mills theory, Phys. Rev. D, 79, Article 014505 pp. (2009), arXiv:0808.3047 [hep-lat]
[210] Maas, A.; Pawlowski, J. M.; Spielmann, D.; Sternbeck, A.; von Smekal, L., Strong-coupling study of the Gribov ambiguity in lattice Landau gauge, Eur. Phys. J. C, 68, 183-195 (2010), arXiv:0912.4203 [hep-lat]
[211] Maas, A., Constructing non-perturbative gauges using correlation functions, Phys. Lett. B, 689, 107-111 (2010), arXiv:0907.5185 [hep-lat]
[212] Bornyakov, V. G.; Mitrjushkin, V. K., SU(2) lattice gluon propagators at finite temperatures in the deep infrared region and Gribov copy effects, Phys. Rev. D, 84, Article 094503 pp. (2011), arXiv:1011.4790 [hep-lat]
[213] Sternbeck, A.; Müller-Preussker, M., Lattice evidence for the family of decoupling solutions of Landau gauge Yang-Mills theory, Phys. Lett. B, 726, 396-403 (2013), arXiv:1211.3057 [hep-lat]
[214] Vandersickel, N.; Zwanziger, D., The Gribov problem and QCD dynamics, Phys. Rep., 520, 175-251 (2012), arXiv:1202.1491 [hep-th]
[215] Maas, A., Local and global gauge-fixing, PoS ConfinementX, 034 (2013), arXiv:1301.2965 [hep-th]
[216] Hirschfeld, P., Strong evidence that Gribov copying does not affect gauge theory functional integral, Nuclear Phys. B, 157, 37-44 (1979)
[217] Neuberger, H., Nonperturbative BRS invariance and the Gribov problem, Phys. Lett. B, 183, 337-340 (1987)
[218] Parrinello, C.; Jona-Lasinio, G., A modified faddeev-popov formula and the Gribov ambiguity, Phys. Lett. B, 251, 175-180 (1990)
[219] Fachin, S.; Parrinello, C., Global gauge fixing in lattice gauge theories, Phys. Rev. D, 44, 2558-2564 (1991)
[220] Fachin, S. P., Quantization of Yang-Mills theory without Gribov copies: Perturbative renormalization, Phys. Rev. D, 47, 3487-3495 (1993)
[221] Kalloniatis, A. C.; von Smekal, L.; Williams, A. G., Curci-Ferrari mass and the Neuberger problem, Phys. Lett. B, 609, 424-429 (2005), arXiv:hep-lat/0501016 [hep-lat]
[222] von Smekal, L.; Mehta, D.; Sternbeck, A.; Williams, A. G., Modified lattice Landau Gauge, PoS Lattice2007, 382 (2007), arXiv:0710.2410 [hep-lat]
[223] von Smekal, L.; Ghiotti, M.; Williams, A. G., Decontracted double BRST on the lattice, Phys. Rev. D, 78, Article 085016 pp. (2008), arXiv:0807.0480 [hep-th]
[224] von Smekal, L.; Jorkowski, A.; Mehta, D.; Sternbeck, A., Lattice Landau gauge via stereographic projection, PoS CONFINEMENT8, 048 (2008), arXiv:0812.2992 [hep-th]
[225] Mehta, D.; Sternbeck, A.; von Smekal, L.; Williams, A. G., Lattice Landau gauge and algebraic geometry, PoS QCD-TNT09, 025 (2009), arXiv:0912.0450 [hep-lat]
[226] Maas, A., (Non-)Aligned gauges and global gauge symmetry breaking, Modern Phys. Lett. A, 27, Article 1250222 pp. (2012), arXiv:1205.0890 [hep-th] · Zbl 1260.81132
[227] Serreau, J.; Tissier, M., Lifting the Gribov ambiguity in Yang-Mills theories, Phys. Lett. B, 712, 97-103 (2012), arXiv:1202.3432 [hep-th]
[228] Serreau, J.; Tissier, M.; Tresmontant, A., Covariant gauges without Gribov ambiguities in Yang-Mills theories, Phys. Rev. D, 89, Article 125019 pp. (2014), arXiv:1307.6019 [hep-th]
[229] Cucchieri, A., Infrared behavior of the gluon propagator in lattice Landau gauge: The three-dimensional case, Phys. Rev. D, 60, Article 034508 pp. (1999), arXiv:hep-lat/9902023 [hep-lat]
[230] Maas, A., Two- and three-point Green’s functions in two-dimensional Landau-gauge Yang-Mills theory, Phys. Rev. D, 75, Article 116004 pp. (2007), arXiv:0704.0722 [hep-lat]
[231] Maas, A.; Olejnik, S., A first look at Landau-gauge propagators in G2 Yang-Mills theory, J. High Energy Phys., 02, 070 (2008), arXiv:0711.1451 [hep-lat]
[232] Maas, A., Describing gauge bosons at zero and finite temperature, Phys. Rep., 524, 203-300 (2013), arXiv:1106.3942 [hep-ph]
[233] Cucchieri, A.; Dudal, D.; Mendes, T.; Vandersickel, N., Modeling the landau-gauge ghost propagator in 2, 3, and 4 spacetime dimensions, Phys. Rev. D, 93, 9, Article 094513 pp. (2016), arXiv:1602.01646 [hep-lat]
[234] Cucchieri, A.; Mendes, T.; Taurines, A. R., SU(2) Landau gluon propagator on a 140**3 lattice, Phys. Rev. D, 67, Article 091502 pp. (2003), hep-lat/0302022
[235] Cucchieri, A.; Maas, A.; Mendes, T., Exploratory study of three-point Green’s functions in Landau-gauge Yang-Mills theory, Phys. Rev. D, 74, Article 014503 pp. (2006), arXiv:hep-lat/0605011
[236] Cucchieri, A.; Mendes, T., Constraints on the IR behavior of the gluon propagator in Yang-Mills theories, Phys. Rev. Lett., 100, Article 241601 pp. (2008), arXiv:0712.3517 [hep-lat] · Zbl 1228.81268
[237] Cucchieri, A.; Maas, A.; Mendes, T., Three-point vertices in Landau-gauge Yang-Mills theory, Phys. Rev. D, 77, Article 094510 pp. (2008), arXiv:0803.1798 [hep-lat]
[238] Cucchieri, A.; Mendes, T., Landau-gauge propagators in Yang-Mills theories at beta = 0: Massive solution versus conformal scaling, Phys. Rev. D, 81, Article 016005 pp. (2010), arXiv:0904.4033 [hep-lat]
[239] A. Cucchieri, D. Dudal, T. Mendes, N. Vandersickel, Modeling the Gluon Propagator in Landau Gauge: Lattice Estimates of Pole Masses and Dimension-Two Condensates, arXiv:1111.2327 [hep-lat].
[240] Bornyakov, V. G.; Mitrjushkin, V. K.; Rogalyov, R. N., Gluon propagators in 3D SU(2) theory and effects of Gribov copies, Phys. Rev. D, 86, Article 114503 pp. (2012), arXiv:1112.4975 [hep-lat]
[241] Maas, A., Dependence of the propagators on the sampling of Gribov copies inside the first Gribov region of Landau gauge, Ann. Physics, 387, 29-61 (2017), arXiv:1705.03812 [hep-lat] · Zbl 1377.81131
[242] Bloch, J. C.R.; Cucchieri, A.; Langfeld, K.; Mendes, T., Propagators and running coupling from SU(2) lattice gauge theory, Nuclear Phys. B, 687, 76-100 (2004), arXiv:hep-lat/0312036
[243] Furui, S.; Nakajima, H., Infrared features of the Landau gauge QCD, Phys. Rev. D, 69, Article 074505 pp. (2004), arXiv:hep-lat/0305010 [hep-lat]
[244] Silva, P. J.; Oliveira, O., Infrared gluon propagator from lattice QCD: Results from large asymmetric lattices, Phys. Rev. D, 74, Article 034513 pp. (2006), arXiv:hep-lat/0511043 [hep-lat]
[245] Cucchieri, A.; Mendes, T., Infrared behavior of gluon and ghost propagators from asymmetric lattices, Phys. Rev. D, 73, Article 071502 pp. (2006), hep-lat/0602012
[246] Cucchieri, A.; Mendes, T., What’s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices, PoS Lattice2007, 297 (2007), arXiv:0710.0412 [hep-lat]
[247] Sternbeck, A.; von Smekal, L.; Leinweber, D.; Williams, A., Comparing SU(2) to SU(3) gluodynamics on large lattices, PoS LAT2007, 340 (2007), arXiv:0710.1982 [hep-lat]
[248] Oliveira, O.; Silva, P. J., Infrared gluon and ghost propagators exponents from lattice QCD, Eur. Phys. J. C, 62, 525-534 (2009), arXiv:0705.0964 [hep-lat]
[249] Cucchieri, A.; Mendes, T.; Oliveira, O.; Silva, P. J., Just how different are SU(2) and SU(3) Landau propagators in the IR regime?, Phys. Rev. D, 76, Article 114507 pp. (2007), arXiv:0705.3367 [hep-lat]
[250] Cucchieri, A.; Mendes, T., Constraints on the IR behavior of the ghost propagator in Yang-Mills theories, Phys. Rev. D, 78, Article 094503 pp. (2008), arXiv:0804.2371 [hep-lat] · Zbl 1228.81268
[251] Gong, M.; Chen, Y.; Meng, G.; Liu, C., Lattice gluon propagator in the Landau gauge: A study using anisotropic lattices, Modern Phys. Lett. A, 24, 1925-1935 (2009), arXiv:0811.4635 [hep-lat] · Zbl 1175.81202
[252] Oliveira, O.; Silva, P. J., Does the lattice zero momentum gluon propagator for pure gauge SU(3) Yang-Mills theory vanish in the infinite volume limit?, Phys. Rev. D, 79, Article 031501 pp. (2009), arXiv:0809.0258 [hep-lat]
[253] Bogolubsky, I. L.; Ilgenfritz, E. M.; Müller-Preussker, M.; Sternbeck, A., Lattice gluodynamics computation of Landau gauge Green’s functions in the deep infrared, Phys. Lett. B, 676, 69-73 (2009), arXiv:0901.0736 [hep-lat]
[254] Bornyakov, V.; Mitrjushkin, V.; Muller-Preussker, M., SU(2) lattice gluon propagator: Continuum limit, finite-volume effects and infrared mass scale m(IR), Phys. Rev. D, 81, Article 054503 pp. (2010), arXiv:0912.4475 [hep-lat]
[255] Oliveira, O.; Silva, P. J., The lattice infrared Landau gauge gluon propagator: The infinite volume limit, PoSLAT2009, 226 (2009), arXiv:0910.2897 [hep-lat]
[256] Pawlowski, J. M.; Spielmann, D.; Stamatescu, I.-O., Lattice Landau gauge with stochastic quantisation, Nuclear Phys. B, 830, 291-314 (2010), arXiv:0911.4921 [hep-lat] · Zbl 1203.81087
[257] Oliveira, O.; Silva, P. J., The lattice Landau gauge gluon propagator: lattice spacing and volume dependence, Phys. Rev. D, 86, Article 114513 pp. (2012), arXiv:1207.3029 [hep-lat]
[258] Bornyakov, V. G.; Mitrjushkin, V. K.; Rogalyov, R. N., Infinite volume and continuum limits for the gluon propagator in 3d SU(2) lattice gauge theory, Phys. Rev. D, 89, 5, Article 054504 pp. (2014), arXiv:1304.8130 [hep-lat]
[259] Maas, A., Some more details of minimal-landau-gauge SU(2) Yang-Mills propagators, Phys. Rev. D, 91, Article 034502 pp. (2015), arXiv:1402.5050 [hep-lat]
[260] Cucchieri, A.; Mendes, T.; Mihara, A., Numerical study of the ghost-gluon vertex in Landau gauge, J. High Energy Phys., 12, 012 (2004), arXiv:hep-lat/0408034
[261] Ilgenfritz, E. M.; Müller-Preussker, M.; Sternbeck, A.; Schiller, A.; Bogolubsky, I. L., Landau gauge gluon and ghost propagators from lattice QCD, Braz. J. Phys., 37, 193 (2007), arXiv:hep-lat/0609043
[262] Sternbeck, A., QCD propagators and vertices from lattice QCD (in memory of Michael Müller-Preußker), EPJ Web Conf., 137, 01020 (2017), arXiv:1612.06106 [hep-lat]
[263] Athenodorou, A.; Binosi, D.; Boucaud, P.; De Soto, F.; Papavassiliou, J.; Rodriguez-Quintero, J.; Zafeiropoulos, S., On the zero crossing of the three-gluon vertex, Phys. Lett. B, 761, 444-449 (2016), arXiv:1607.01278 [hep-ph]
[264] Boucaud, P.; De Soto, F.; Rodrí guez Quintero, J.; Zafeiropoulos, S., Refining the detection of the zero crossing for the three-gluon vertex in symmetric and asymmetric momentum subtraction schemes, Phys. Rev. D, 95, 11, Article 114503 pp. (2017), arXiv:1701.07390 [hep-lat]
[265] Fischer, C. S.; Maas, A.; Muller, J. A., Chiral and deconfinement transition from correlation functions: SU(2) vs. SU(3), Eur. Phys. J. C, 68, 165-181 (2010), arXiv:1003.1960 [hep-ph]
[266] Fischer, C. S.; Luecker, J.; Mueller, J. A., Chiral and deconfinement phase transitions of two-flavour QCD at finite temperature and chemical potential, Phys. Lett. B, 702, 438-441 (2011), arXiv:1104.1564 [hep-ph]
[267] Fischer, C. S.; Luecker, J., Propagators and phase structure of Nf=2 and Nf=2+1 QCD, Phys. Lett. B, 718, 1036-1043 (2013), arXiv:1206.5191 [hep-ph] · Zbl 1332.81242
[268] Fischer, C. S.; Fister, L.; Luecker, J.; Pawlowski, J. M., Polyakov loop potential at finite density, Phys. Lett. B, 732, 273-277 (2014), arXiv:1306.6022 [hep-ph]
[269] Fischer, C. S.; Luecker, J.; Welzbacher, C. A., Phase structure of three and four flavor QCD, Phys. Rev. D, 90, 3, Article 034022 pp. (2014), arXiv:1405.4762 [hep-ph]
[270] Eichmann, G.; Fischer, C. S.; Welzbacher, C. A., Baryon effects on the location of QCD’s critical end point, Phys. Rev. D, 93, 3, Article 034013 pp. (2016), arXiv:1509.02082 [hep-ph]
[271] Contant, R.; Huber, M. Q., The quark propagators of QCD and QCD-like theories, Acta Phys. Polon. Suppl., 10, 1009 (2017), arXiv:1709.03326 [hep-ph]
[272] van Baal, P., More (thoughts on) Gribov copies, Nuclear Phys. B, 369, 259-275 (1992)
[273] Zwanziger, D., Local and renormalizable action from the Gribov horizon, Nuclear Phys. B, 323, 513-544 (1989)
[274] Zwanziger, D., Renormalizability of the critical limit of lattice gauge theory by BRS invariance, Nuclear Phys. B, 399, 477-513 (1993)
[275] Zwanziger, D., Vanishing of zero momentum lattice gluon propagator and color confinement, Nuclear Phys. B, 364, 127-161 (1991)
[276] Dudal, D.; Sorella, S. P.; Vandersickel, N.; Verschelde, H., Gribov no-pole condition, zwanziger horizon function, Kugo-Ojima confinement criterion, boundary conditions, BRST breaking and all that, Phys. Rev. D, 79, Article 121701 pp. (2009), arXiv:0904.0641 [hep-th]
[277] K.-I. Kondo, The Nilpotent BRST symmetry for the Gribov-Zwanziger theory, arXiv:0905.1899 [hep-th].
[278] Sorella, S. P., Gribov horizon and BRST symmetry: a few remarks, Phys. Rev. D, 80, Article 025013 pp. (2009), arXiv:0905.1010 [hep-th]
[279] L. Baulieu, D. Dudal, M.S. Guimaraes, M.Q. Huber, S.P. Sorella, N. Vandersickel, D. Zwanziger, Gribov horizon and i-particles: about a toy model and the construction of physical operators, arXiv:0912.5153 [hep-th]. · Zbl 1331.81325
[280] Sorella, S. P.; Baulieu, L.; Dudal, D.; Guimaraes, M. S.; Huber, M. Q.; Vandersickel, N.; Zwanziger, D., Gribov horizon and BRST symmetry: A pathway to confinement, AIP Conf. Proc., 1361, 1, 272-276 (2011), arXiv:1003.0086 [hep-th] · Zbl 1331.81325
[281] Dudal, D.; Vandersickel, N.; Baulieu, L.; Sorella, S. P.; Guimaraes, M. S.; Huber, M. Q.; Oliveira, O.; Zwanziger, D., From unphysical gluon and ghost propagators to physical glueball propagators (in the Gribov-Zwanziger picture): A not so trivial task?, PoS LC2010, 021 (2010), arXiv:1009.5846 [hep-th]
[282] Dudal, D.; Gracey, J. A.; Sorella, S. P.; Vandersickel, N.; Verschelde, H., A refinement of the Gribov-Zwanziger approach in the Landau gauge: infrared propagators in harmony with the lattice results, Phys. Rev. D, 78, Article 065047 pp. (2008), arXiv:0806.4348 [hep-th]
[283] Gracey, J., Alternative refined Gribov-Zwanziger Lagrangian, Phys. Rev. D, 82, Article 085032 pp. (2010), arXiv:1009.3889 [hep-th]
[284] Dudal, D.; Sorella, S.; Vandersickel, N., The dynamical origin of the refinement of the Gribov-Zwanziger theory, Phys. Rev. D, 84, Article 065039 pp. (2011), arXiv:1105.3371 [hep-th]
[285] Dudal, D.; Guimaraes, M. S.; Sorella, S. P., Glueball masses from an infrared moment problem and nonperturbative Landau gauge, Phys. Rev. Lett., 106, Article 062003 pp. (2011), arXiv:1010.3638 [hep-th]
[286] Capri, M. A.L.; Gomez, A. J.; Guimaraes, M. S.; Lemes, V. E.R.; Sorella, S. P.; Tedesco, D. G., A study of the lightest glueball states in SU(2) Euclidean Yang-Mills theory in the maximal Abelian gauge, Phys. Rev. D, 85, Article 085012 pp. (2012), arXiv:1110.4395 [hep-th]
[287] Dudal, D.; Guimaraes, M. S.; Sorella, S. P., Pade approximation and glueball mass estimates in \(3 d\) and \(4 d\) with \(N_c = 2 , 3\) colors, Phys. Lett. B, 732, 247-254 (2014), arXiv:1310.2016 [hep-ph]
[288] Canfora, F. E.; Dudal, D.; Justo, I. F.; Pais, P.; Rosa, L.; Vercauteren, D., Effect of the Gribov horizon on the Polyakov loop and vice versa, Eur. Phys. J. C, 75, 7, 326 (2015), arXiv:1505.02287 [hep-th]
[289] Dudal, D.; Felix, C. P.; Guimaraes, M. S.; Sorella, S. P., Accessing the topological susceptibility via the Gribov horizon, Phys. Rev. D, 96, 7, Article 074036 pp. (2017), arXiv:1704.06529 [hep-ph]
[290] Capri, M. A.L.; Lemes, V. E.R.; Sobreiro, R. F.; Sorella, S. P.; Thibes, R., The influence of the Gribov copies on the gluon and ghost propagators in Euclidean Yang-Mills theory in the maximal Abelian gauge, Phys. Rev. D, 72, Article 085021 pp. (2005), arXiv:hep-th/0507052
[291] Dudal, D.; Capri, M. A.L.; Gracey, J. A.; Lemes, V. E.R.; Sobreiro, R. F.; Sorella, S. P.; Thibes, R.; Verschelde, H., Gribov ambiguities in the maximal abelian gauge, Braz. J. Phys., 37, 320-324 (2007), arXiv:hep-th/0609160 [hep-th]
[292] Capri, M. A.L.; Lemes, V. E.R.; Sobreiro, R. F.; Sorella, S. P.; Thibes, R., A study of the maximal Abelian gauge in SU(2) Euclidean Yang-Mills theory in the presence of the Gribov horizon, Phys. Rev. D, 74, Article 105007 pp. (2006), arXiv:hep-th/0609212
[293] Capri, M. A.L.; Dudal, D.; Gracey, J. A.; Sorella, S. P.; Verschelde, H., Nonperturbative ghost dynamics in the maximal Abelian gauge, J. High Energy Phys., 01, 006 (2008), arXiv:0708.4303 [hep-th]
[294] Capri, M. A.L.; Lemes, V. E.R.; Sobreiro, R. F.; Sorella, S. P.; Thibes, R., The gluon and ghost propagators in Euclidean Yang-Mills theory in the maximal Abelian gauge: taking into account the effects of the Gribov copies and of the dimension two condensates, Phys. Rev. D, 77, Article 105023 pp. (2008), arXiv:0801.0566 [hep-th] · Zbl 1135.81023
[295] Capri, M. A.L.; Dudal, D.; Fiorentini, D.; Guimaraes, M. S.; Justo, I. F.; Pereira, A. D.; Mintz, B. W.; Palhares, L. F.; Sobreiro, R. F.; Sorella, S. P., Exact nilpotent nonperturbative BRST symmetry for the Gribov-Zwanziger action in the linear covariant gauge, Phys. Rev. D, 92, 4, Article 045039 pp. (2015), arXiv:1506.06995 [hep-th]
[296] Capri, M. A.L.; Fiorentini, D.; Guimaraes, M. S.; Mintz, B. W.; Palhares, L. F.; Sorella, S. P.; Dudal, D.; Justo, I. F.; Pereira, A. D.; Sobreiro, R. F., More on the nonperturbative Gribov-Zwanziger quantization of linear covariant gauges, Phys. Rev. D, 93, 6, Article 065019 pp. (2016), arXiv:1512.05833 [hep-th]
[297] Capri, M. A.L.; Fiorentini, D.; Pereira, A. D.; Sobreiro, R. F.; Sorella, S. P.; Terin, R. C., Aspects of the refined Gribov-Zwanziger action in linear covariant gauges, Ann. Physics, 376, 40-62 (2017), arXiv:1607.07912 [hep-th] · Zbl 1364.81181
[298] Capri, M. A.L.; Fiorentini, D.; Pereira, A. D.; Sorella, S. P., Renormalizability of the refined Gribov-Zwanziger action in linear covariant gauges, Phys. Rev. D, 96, 5, Article 054022 pp. (2017), arXiv:1708.01543 [hep-th] · Zbl 1364.81181
[299] Curci, G.; Ferrari, R., On a class of Lagrangian models for massive and massless Yang-Mills fields, Nuovo Cimento A, 32, 151-168 (1976)
[300] Tissier, M.; Wschebor, N., Infrared propagators of Yang-Mills theory from perturbation theory, Phys. Rev. D, 82, Article 101701 pp. (2010), arXiv:1004.1607 [hep-ph]
[301] Tissier, M.; Wschebor, N., An infrared safe perturbative approach to Yang-Mills correlators, Phys. Rev. D, 84, Article 045018 pp. (2011), arXiv:1105.2475 [hep-th]
[302] Peláez, M.; Tissier, M.; Wschebor, N., Two-point correlation functions of QCD in the Landau gauge, Phys. Rev. D, 90, Article 065031 pp. (2014), arXiv:1407.2005 [hep-th]
[303] Peláez, M.; Reinosa, U.; Serreau, J.; Tissier, M.; Wschebor, N., Small parameters in infrared quantum chromodynamics, Phys. Rev. D, 96, 11, Article 114011 pp. (2017), arXiv:1703.10288 [hep-th]
[304] Gracey, J. A.; Peláez, M.; Reinosa, U.; Tissier, M., Two loop calculation of Yang-Mills propagators in the Curci-Ferrari model, Phys. Rev. D, 100, 3, Article 034023 pp. (2019), arXiv:1905.07262 [hep-th]
[305] Pelaez, M.; Tissier, M.; Wschebor, N., Three-point correlation functions in Yang-Mills theory, Phys. Rev. D, 88, Article 125003 pp. (2013), arXiv:1310.2594 [hep-th]
[306] Peláez, M.; Tissier, M.; Wschebor, N., Quark-gluon vertex from the Landau gauge Curci-Ferrari model, Phys. Rev. D, 92, 4, Article 045012 pp. (2015), arXiv:1504.05157 [hep-th]
[307] Gracey, J. A., Low momentum propagators at two loops in gluon mass model, J. Phys.A, 47, 44, Article 445401 pp. (2014), arXiv:1409.0455 [hep-ph] · Zbl 1304.81147
[308] Reinosa, U.; Serreau, J.; Tissier, M.; Wschebor, N., Yang-Mills Correlators at finite temperature: A perturbative perspective, Phys. Rev. D, 89, 10, Article 105016 pp. (2014), arXiv:1311.6116 [hep-th]
[309] Reinosa, U.; Serreau, J.; Tissier, M.; Wschebor, N., Deconfinement transition in SU \((N)\) theories from perturbation theory, Phys. Lett. B, 742, 61-68 (2015), arXiv:1407.6469 [hep-ph] · Zbl 1345.81083
[310] Reinosa, U.; Serreau, J.; Tissier, M.; Wschebor, N., Deconfinement transition in SU(2) Yang-Mills theory: A two-loop study, Phys. Rev. D, 91, Article 045035 pp. (2015), arXiv:1412.5672 [hep-th] · Zbl 1345.81083
[311] Reinosa, U.; Serreau, J.; Tissier, M.; Wschebor, N., Two-loop study of the deconfinement transition in Yang-Mills theories: SU(3) and beyond, Phys. Rev. D, 93, 10, Article 105002 pp. (2016), arXiv:1511.07690 [hep-th]
[312] Reinosa, U.; Serreau, J.; Tissier, M., Perturbative study of the QCD phase diagram for heavy quarks at nonzero chemical potential, Phys. Rev. D, 92, Article 025021 pp. (2015), arXiv:1504.02916 [hep-th]
[313] Reinosa, U.; Serreau, J.; Tissier, M.; Tresmontant, A., Yang-Mills Correlators across the deconfinement phase transition, Phys. Rev. D, 95, 4, Article 045014 pp. (2017), arXiv:1606.08012 [hep-th]
[314] J. Maelger, U. Reinosa, J. Serreau, A perturbative study of the QCD phase diagram for heavy quarks at nonzero chemical potential: two-loop corrections, arXiv:1710.01930 [hep-ph].
[315] Weber, A., Epsilon expansion for infrared Yang-Mills theory in Landau gauge, Phys. Rev. D, 85, Article 125005 pp. (2012), arXiv:1112.1157 [hep-th]
[316] Weber, A., The infrared fixed point of Landau gauge Yang-Mills theory: A renormalization group analysis, J. Phys. Conf. Ser., 378, Article 012042 pp. (2012), arXiv:1205.0491 [hep-th]
[317] Weber, A., The infrared fixed point of Landau gauge Yang-Mills theory, Acta Phys. Polon. Supp., 6, 341 (2013), arXiv:1211.1473 [hep-th]
[318] Weber, A.; Dall’Olio, P., Callan-Symanzik approach to infrared Yang-Mills theory, EPJ Web Conf., 80, 00016 (2014)
[319] Siringo, F., Gluon propagator in Feynman gauge by the method of stationary variance, Phys. Rev. D, 90, 9, Article 094021 pp. (2014), arXiv:1408.5313 [hep-ph]
[320] Siringo, F., Second order gluon polarization for SU(N) theory in a linear covariant gauge, Phys. Rev. D, 92, 7, Article 074034 pp. (2015), arXiv:1507.00122 [hep-ph]
[321] F.A. Machado, Transversality of gluon mass generation through an effective loop expansion in covariant and background field gauges, arXiv:1601.02067 [hep-ph].
[322] Weber, A.; Dall’Olio, P.; Astorga, F., Infrared Yang-Mills theory: A renormalization group perspective, Internat. J. Modern Phys. E, 25, 07, Article 1642002 pp. (2016)
[323] Siringo, F., Analytical study of Yang-Mills theory in the infrared from first principles, Nuclear Phys. B, 907, 572-596 (2016), arXiv:1511.01015 [hep-ph] · Zbl 1336.81060
[324] Siringo, F., Analytic structure of QCD propagators in Minkowski space, Phys. Rev. D, 94, 11, Article 114036 pp. (2016), arXiv:1605.07357 [hep-ph]
[325] G. Comitini, F. Siringo, Variational study of mass generation and deconfinement in Yang-Mills theory, arXiv:1707.06935 [hep-ph].
[326] F. Siringo, G. Comitini, The gluon propagator in linear covariant \(R_\xi\) gauges, arXiv:1806.08397 [hep-ph].
[327] Celmaster, W.; Gonsalves, R. J., The renormalization prescription dependence of the QCD coupling constant, Phys. Rev. D, 20, 1420 (1979)
[328] Taylor, J. C., Ward identities and charge renormalization of the Yang-Mills field, Nuclear Phys. B, 33, 436-444 (1971)
[329] P. Boucaud, J.P. Leroy, A. Le Yaouanc, A.Y. Lokhov, J. Micheli, O. Pene, J. Rodriguez-Quintero, C. Roiesnel, The infrared behaviour of the pure Yang-Mills Green functions, arXiv:hep-ph/0507104.
[330] Alkofer, R.; Fischer, C. S.; Llanes-Estrada, F. J., Vertex functions and infrared fixed point in Landau gauge SU(N) Yang-Mills theory, Phys. Lett. B, 611, 279-288 (2005), arXiv:hep-th/0412330 [hep-th] · Zbl 1247.81263
[331] Boucaud, P.; Leroy, J. P.; Yaouanc, A. L.; Micheli, J.; Pene, O.; Rodriguez-Quintero, J., The infrared behaviour of the pure Yang-Mills green functions, Few Body Syst., 53, 387-436 (2012), arXiv:1109.1936 [hep-ph]
[332] Boucaud, P.; Dudal, D.; Leroy, J.; Pene, O.; Rodriguez-Quintero, J., On the leading OPE corrections to the ghost-gluon vertex and the Taylor theorem, J. High Energy Phys., 1112, 018 (2011), arXiv:1109.3803 [hep-ph] · Zbl 1306.81325
[333] Schleifenbaum, W.; Maas, A.; Wambach, J.; Alkofer, R., Infrared behaviour of the ghost-gluon vertex in Landau gauge Yang-Mills theory, Phys. Rev. D, 72, Article 014017 pp. (2005), arXiv:hep-ph/0411052 [hep-ph]
[334] Aguilar, A.; Ibáñez, D.; Papavassiliou, J., Ghost propagator and ghost-gluon vertex from Schwinger-Dyson equations, Phys. Rev. D, 87, Article 114020 pp. (2013), arXiv:1303.3609 [hep-ph]
[335] M.Q. Huber, L. von Smekal, Going beyond the propagators of Landau gauge Yang-Mills theory, PoS ConfinementX (2013) 062, arXiv:1301.3080 [hep-th].
[336] B.W. Mintz, L.F. Palhares, S.P. Sorella, A.D. Pereira, The ghost-gluon vertex in the presence of the Gribov horizon, arXiv:1712.09633 [hep-th].
[337] Maas, Axel, Constraining the gauge-fixed lagrangian in minimal landau gauge, SciPost Phys., 8, 071 (2020), arXiv:1907.10435
[338] Schleifenbaum, W.; Leder, M.; Reinhardt, H., Infrared analysis of propagators and vertices of Yang- Mills theory in Landau and coulomb gauge, Phys. Rev. D, 73, Article 125019 pp. (2006), arXiv:hep-th/0605115
[339] Duarte, A. G.; Oliveira, O.; Silva, P. J., Lattice gluon and ghost propagators, and the strong coupling in pure SU(3) Yang-Mills theory: Finite lattice spacing and volume effects, Phys. Rev. D, 94, 1, Article 014502 pp. (2016), arXiv:1605.00594 [hep-lat]
[340] Boucaud, P.; De Soto, F.; Rodrí guez Quintero, J.; Zafeiropoulos, S., Comment on Lattice gluon and ghost propagators and the strong coupling in pure \(S U ( 3 )\) Yang-Mills theory: Finite lattice spacing and volume effects, Phys. Rev. D, 96, 9, Article 098501 pp. (2017), arXiv:1704.02053 [hep-lat]
[341] Duarte, A. G.; Oliveira, O.; Silva, P. J., Reply to Comment on ‘Lattice gluon and ghost propagators and the strong coupling in pure \(S U ( 3 )\) Yang-Mills theory: Finite lattice spacing and volume effects’, Phys. Rev. D, 96, 9, Article 098502 pp. (2017), arXiv:1704.02864 [hep-lat]
[342] Boucaud, P.; De Soto, F.; Raya, K.; Rodríguez-Quintero, J.; Zafeiropoulos, S., Discretization effects on renormalized gauge-field Green’s functions, scale setting, and the gluon mass, Phys. Rev. D, 98, 11, Article 114515 pp. (2018), arXiv:1809.05776 [hep-ph]
[343] Biddle, J. C.; Kamleh, W.; Leinweber, D. B., Gluon propagator on a center-vortex background, Phys. Rev. D, 98, 9, Article 094504 pp. (2018), arXiv:1806.04305 [hep-lat]
[344] Sternbeck, A.; Balduf, P.-H.; Kızılersu, A.; Oliveira, O.; Silva, P. J.; Skullerud, J.-I.; Williams, A. G., Triple-gluon and quark-gluon vertex from lattice QCD in Landau gauge, PoS LATTICE2016, 349 (2017), arXiv:1702.00612 [hep-lat]
[345] Duarte, A. G.; Oliveira, O.; Silva, P. J., Further evidence for zero crossing on the three gluon vertex, Phys. Rev. D, 94, 7, Article 074502 pp. (2016), arXiv:1607.03831 [hep-lat]
[346] von Smekal, L.; Alkofer, R.; Hauck, A., The infrared behavior of gluon and ghost propagators in Landau gauge QCD, Phys. Rev. Lett., 79, 3591-3594 (1997), arXiv:hep-ph/9705242
[347] von Smekal, L.; Hauck, A.; Alkofer, R., A solution to coupled Dyson-Schwinger equations for gluons and ghosts in Landau gauge, Ann. Phys., 267, 1 (1998), arXiv:hep-ph/9707327 · Zbl 0925.81411
[348] Fischer, C. S.; Pawlowski, J. M., Uniqueness of infrared asymptotics in Landau gauge Yang- Mills theory, Phys. Rev. D, 75, Article 025012 pp. (2007), arXiv:hep-th/0609009
[349] Huber, M. Q.; Alkofer, R.; Fischer, C. S.; Schwenzer, K., The infrared behavior of Landau gauge Yang-Mills theory in d=2, 3 and 4 dimensions, Phys. Lett. B, 659, 434-440 (2008), arXiv:0705.3809 [hep-ph] · Zbl 1246.81132
[350] Alkofer, R.; Fischer, C. S.; Huber, M. Q.; Llanes-Estrada, F. J.; Schwenzer, K., Confinement and Green functions in Landau-gauge QCD, PoS CONFINEMENT8, 019 (2008), arXiv:0812.2896 [hep-ph]
[351] Fischer, C. S.; Pawlowski, J. M., Uniqueness of infrared asymptotics in Landau gauge Yang- Mills theory II, Phys. Rev. D, 80, Article 025023 pp. (2009), arXiv:0903.2193 [hep-th]
[352] T. Kugo, The universal renormalization factors Z(1) / Z(3) and color confinement condition in non-Abelian gauge theory, arXiv:hep-th/9511033, Talk given at International Symposium on BRS Symmetry on the Occasion of Its 20th Anniversary, Kyoto, Japan, 18-22 1995. Published in *Kyoto 1995, BRS symmetry* 107-119.
[353] Zwanziger, D., Nonperturbative Landau gauge and infrared critical exponents in QCD, Phys. Rev. D, 65, Article 094039 pp. (2002), arXiv:hep-th/0109224 [hep-th]
[354] Boucaud, P., IR Finiteness of the ghost dressing function from numerical resolution of the ghost SD equation, J. High Energy Phys., 06, 012 (2008), arXiv:0801.2721 [hep-ph]
[355] Boucaud, P.; Leroy, J.; Le Yaouanc, A.; Micheli, J.; Pene, O., On the IR behaviour of the landau-gauge ghost propagator, J. High Energy Phys., 0806, 099 (2008), arXiv:0803.2161 [hep-ph]
[356] Alkofer, R.; Huber, M. Q.; Schwenzer, K., Infrared singularities in Landau gauge Yang-Mills theory, Phys. Rev. D, 81, Article 105010 pp. (2010), arXiv:0801.2762 [hep-th]
[357] Aguilar, A. C.; Natale, A. A., A dynamical gluon mass solution in a coupled system of the Schwinger-Dyson equations, J. High Energy Phys., 08, 057 (2004), arXiv:hep-ph/0408254 [hep-ph]
[358] Neuberger, H., Nonperturbative BRS invariance, Phys. Lett. B, 175, 69-72 (1986)
[359] Maas, A.; Pawlowski, J. M.; von Smekal, L.; Spielmann, D., The gluon propagator close to criticality, Phys. Rev. D, 85, Article 034037 pp. (2012), arXiv:1110.6340 [hep-lat]
[360] Cucchieri, A.; Mendes, T., Electric and magnetic screening masses around the deconfinement transition, PoS LATTICE2011, 206 (2011), arXiv:1201.6086 [hep-lat]
[361] Silva, P. J.; Oliveira, O.; Bicudo, P.; Cardoso, N., Gluon screening mass at finite temperature from the Landau gauge gluon propagator in lattice QCD, Phys. Rev. D, 89, 7, Article 074503 pp. (2014), arXiv:1310.5629 [hep-lat]
[362] Fister, L.; Maas, A., Exploratory study of the temperature dependence of magnetic vertices in SU(2) Landau gauge Yang-Mills theory, Phys. Rev. D, 90, 5, Article 056008 pp. (2014), arXiv:1406.0638 [hep-lat]
[363] Silva, P. J.; Oliveira, O., Gluon Dynamics, Center Symmetry and the deconfinement phase transition in SU(3) pure Yang-Mills theory, Phys. Rev. D, 93, 11, Article 114509 pp. (2016), arXiv:1601.01594 [hep-lat]
[364] Silva, P. J.; Oliveira, O.; Dudal, D.; Bicudo, P.; Cardoso, N., Gluons at finite temperature, Few Body Syst., 58, 3, 127 (2017), arXiv:1611.04966 [hep-lat]
[365] Boz, T.; Cotter, S.; Fister, L.; Mehta, D.; Skullerud, J.-I., Phase transitions and gluodynamics in 2-colour matter at high density, Eur. Phys. J. A, 49, 87 (2013), arXiv:1303.3223 [hep-lat]
[366] Hajizadeh, O.; Boz, T.; Maas, A.; Skullerud, J.-I.; Della Morte, M.; Fritzsch, P.; Gámiz Sánchez, E.; Pena Ruano, C., Gluon and ghost correlation functions of 2-color QCD at finite density, EPJ Web Conf., 175, 07012 (2018), arXiv:1710.06013
[367] Boz, T.; Hajizadeh, O.; Maas, A.; Skullerud, J.-I., Finite-density gauge correlation functions in QC2D, Phys. Rev. D, 99, 7, Article 074514 pp. (2019), arXiv:1812.08517 [hep-lat]
[368] V. Bornyakov, V. Braguta, A. Nikolaev, R. Rogalyov, Effects of Dense Quark Matter on Gluon Propagators in Lattice QC \({}_2\) D, arXiv:2003.00232 [hep-lat].
[369] He, M.; Feng, H.-T.; Sun, W.-M.; Zong, H.-S., A model study of QCD phase transition, J. Phys. G, 34, 2655-2663 (2007)
[370] X.-y. Xin, M.; S.-x. Qin, H.-T.; Y.-x. Liu, W.-M., Quark number fluctuations at finite temperature and finite chemical potential via the Dyson-Schwinger equation approach, Phys. Rev. D, 90, 7, Article 076006 pp. (2014)
[371] Gao, F.; Y.-x. Liu, H.-T., QCD Phase transitions via a refined truncation of Dyson-Schwinger equations, Phys. Rev. D, 94, 7, Article 076009 pp. (2016), arXiv:1607.01675 [hep-ph]
[372] Müller, D.; Buballa, M.; Wambach, J., Dyson-Schwinger Approach to color superconductivity at finite temperature and density, Eur. Phys. J. A, 49, 96 (2013), arXiv:1303.2693 [hep-ph]
[373] Isserstedt, P.; Buballa, M.; Fischer, C. S.; Gunkel, P. J., Baryon number fluctuations in the QCD phase diagram from Dyson-Schwinger equations, Phys. Rev. D, 100, 7, Article 074011 pp. (2019), arXiv:1906.11644 [hep-ph]
[374] Gunkel, P. J.; Fischer, C. S.; Isserstedt, P., Quarks and light (pseudo-)scalar mesons at finite chemical potential, Eur. Phys. J. A, 55, 9, 169 (2019), arXiv:1907.08110 [hep-ph]
[375] Maas, A.; Wambach, J.; Alkofer, R., The high-temperature phase of Landau-gauge Yang-Mills theory, Eur. Phys. J. C, 42, 93-107 (2005), arXiv:hep-ph/0504019
[376] Huber, M. Q.; von Smekal, L., On two- and three-point functions of Landau gauge Yang-Mills theory, PoS LATTICE2013, 364 (2014), arXiv:1311.0702 [hep-lat]
[377] Quandt, M.; Reinhardt, H., A covariant variational approach to Yang-Mills theory at finite temperatures, Phys. Rev. D, 92, 2, Article 025051 pp. (2015), arXiv:1503.06993 [hep-th]
[378] Contant, R.; Huber, M. Q.; Fischer, C. S.; Welzbacher, C. A.; Williams, R., On the quark-gluon vertex at non-vanishing temperature, Acta Phys. Polon. Supp., 11, 483 (2018), arXiv:1805.05885 [hep-ph]
[379] C.S. Fischer, QCD at finite temperature and chemical potential from Dyson-Schwinger equations. arXiv:1810.12938 [hep-ph].
[380] Alkofer, R.; Detmold, W.; Fischer, C. S.; Maris, P., Analytic properties of the Landau gauge gluon and quark propagators, Phys. Rev. D, 70, Article 014014 pp. (2004)
[381] Fischer, C. S.; Watson, P.; Cassing, W., Probing unquenching effects in the gluon polarisation in light mesons, Phys. Rev. D, 72, Article 094025 pp. (2005), arXiv:hep-ph/0509213 [hep-ph]
[382] Krassnigg, A., Excited mesons in a Bethe-Salpeter approach, PoS CONFINEMENT8, 075 (2008), arXiv:0812.3073 [nucl-th]
[383] Strauss, S.; Fischer, C. S.; Kellermann, C., Analytic structure of the Landau gauge gluon propagator, Phys. Rev. Lett., 109, Article 252001 pp. (2012)
[384] Dorkin, S. M.; Kaptari, L. P.; Hilger, T.; Kampfer, B., Analytical properties of the quark propagator from a truncated Dyson-Schwinger equation in complex Euclidean space, Phys. Rev. C, 89, Article 034005 pp. (2014), arXiv:1312.2721 [hep-ph]
[385] Dudal, D.; Oliveira, O.; Silva, P. J., Källén-Lehmann spectroscopy for (un)physical degrees of freedom, Phys. Rev. D, 89, 1, Article 014010 pp. (2014), arXiv:1310.4069 [hep-lat]
[386] Cornwall, J. M., Positivity violations in QCD, Mod. Phys. Lett. A, 28, Article 1330035 pp. (2013), arXiv:1310.7897 [hep-ph]
[387] Windisch, A., Analytic properties of the quark propagator from an effective infrared interaction model, Phys. Rev. C, 95, 4, Article 045204 pp. (2017), arXiv:1612.06002 [hep-ph]
[388] P. Lowdon, The non-perturbative structure of the quark and ghost propagators in QCD. arXiv:1711.07569 [hep-th]. · Zbl 1398.81269
[389] Lowdon, P., Nonperturbative structure of the photon and gluon propagators, Phys. Rev. D, 96, 6, Article 065013 pp. (2017), arXiv:1702.02954 [hep-th]
[390] Lowdon, P., Dyson-Schwinger equation constraints on the gluon propagator in BRST quantised QCD, Phys. Lett. B, 786, 399-402 (2018), arXiv:1801.09337 [hep-th] · Zbl 1404.81290
[391] A.K. Cyrol, J.M. Pawlowski, A. Rothkopf, N. Wink, Reconstructing the gluon. arXiv:1804.00945 [hep-ph].
[392] L.P. Kaptari, B. Kämpfer, P. Zhang, Analytical properties of the gluon propagator from truncated Dyson-Schwinger equation in complex Euclidean space. arXiv:1811.01479 [hep-ph].
[393] Lowdon, P., On the analytic structure of QCD propagators, (13th Conference on Quark Confinement and the Hadron Spectrum (Confinement XIII) Maynooth, Ireland, July 31-August 6, 2018 (2018)), arXiv:1811.03037 [hep-th]
[394] Dudal, D.; Oliveira, O.; Roelfs, M.; Silva, P., Spectral representation of lattice gluon and ghost propagators at zero temperature, Nucl. Phys. B, 952, Article 114912 pp. (2020), arXiv:1901.05348 [hep-lat] · Zbl 1472.81309
[395] Sanchis-Alepuz, H.; Fischer, C. S.; Kellermann, C.; von Smekal, L., Glueballs from the Bethe-Salpeter equation, Phys. Rev. D, 92, Article 034001 pp. (2015), arXiv:1503.06051 [hep-ph]
[396] Meyers, J.; Swanson, E. S., Spin zero glueballs in the Bethe-Salpeter formalism, Phys. Rev. D, 87, 3, Article 036009 pp. (2013), arXiv:1211.4648 [hep-ph]
[397] Souza, E. V.; Ferreira, M. N.; Aguilar, A. C.; Papavassiliou, J.; Roberts, C. D.; Xu, S.-S., Pseudoscalar glueball mass: A window on three-gluon interactions, Eur. Phys. J. A, 56, 1, 25 (2020), arXiv:1909.05875 [nucl-th]
[398] L. Kaptari, B. Kämpfer, Mass spectrum of pseudo-scalar glueballs from a Bethe-Salpeter approach with the rainbow-ladder truncation. arXiv:2004.06523 [hep-ph].
[399] Windisch, A.; Huber, M. Q.; Alkofer, R., How to determine the branch points of correlation functions in Euclidean space, Acta Phys. Polon. Supp., 6, 3, 887-892 (2013), arXiv:1304.3642 [hep-ph]
[400] Maris, P., Confinement and complex singularities in QED in three-dimensions, Phys. Rev. D, 52, 6087-6097 (1995), arXiv:hep-ph/9508323 [hep-ph] · Zbl 0875.82041
[401] Fischer, C. S.; Nickel, D.; Williams, R., On Gribov’s supercriticality picture of quark confinement, Eur. Phys. J. C, 60, 47-61 (2009), arXiv:0807.3486 [hep-ph]
[402] Windisch, A.; Alkofer, R.; Haase, G.; Liebmann, M., Examining the analytic structure of green’s functions: Massive parallel complex integration using GPUs, Comput. Phys. Commun., 184, 109-116 (2013), arXiv:1205.0752 [hep-ph] · Zbl 1296.65043
[403] Windisch, A.; Huber, M. Q.; Alkofer, R., On the analytic structure of scalar glueball operators at the Born level, Phys. Rev. D, 87, 6, Article 065005 pp. (2013), arXiv:1212.2175 [hep-ph]
[404] Windisch, A.; Huber, M. Q.; Alkofer, R., On the analytic structure of scalar glueball operators, PoS CONFINEMENTX, 060 (2012), arXiv:1301.3525 [hep-ph]
[405] Alkofer, R.; Fischer, C. S.; Llanes-Estrada, F. J.; Schwenzer, K., The quark-gluon vertex in Landau gauge QCD: Its role in dynamical chiral symmetry breaking and quark confinement, Annals Phys., 324, 106-172 (2009), arXiv:0804.3042 [hep-ph] · Zbl 1162.81035
[406] Blum, A. L.; Alkofer, R.; Huber, M. Q.; Windisch, A., Three-point vertex functions in Yang-Mills theory and QCD in Landau gauge, EPJ Web Conf., 137, 03001 (2017), arXiv:1611.04827 [hep-ph]
[407] Binosi, D.; Chang, L.; Papavassiliou, J.; Qin, S.-X.; Roberts, C. D., Natural constraints on the gluon-quark vertex, Phys. Rev. D, 95, 3, Article 031501 pp. (2017), arXiv:1609.02568 [nucl-th]
[408] Pascual, P.; Tarrach, R., QCD: Renormalization for the practitioner, (194 of Lecture Notes in Physics (1984), Springer: Springer Heidelberg)
[409] Ryder, L. H., Quantum Field Theory (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0893.00008
[410] ’t Hooft, G.; Veltman, M. J.G., Regularization and renormalization of gauge fields, Nucl. Phys. B, 44, 189-213 (1972)
[411] Bollini, C. G.; Giambiagi, J. J., Dimensional renormalization: The number of dimensions as a regularizing parameter, Nuovo Cim. B, 12, 20-26 (1972)
[412] Schreiber, A. W.; Sizer, T.; Williams, A. G., Dimensionally regularized study of nonperturbative quenched QED, Phys. Rev. D, 58, Article 125014 pp. (1998), arXiv:hep-ph/9804385 [hep-ph] · Zbl 0987.81608
[413] Gusynin, V. P.; Schreiber, A. W.; Sizer, T.; Williams, A. G., Chiral symmetry breaking in dimensionally regularized nonperturbative quenched QED, Phys. Rev. D, 60, Article 065007 pp. (1999), arXiv:hep-th/9811184 [hep-th]
[414] Phillips, D. R.; Afnan, I. R.; Henry-Edwards, A. G., Numerical renormalization using dimensional regularization: A simple test case in the Lippmann-Schwinger equation, Phys. Rev. C, 61, Article 044002 pp. (2000), arXiv:nucl-th/9910063 [nucl-th]
[415] Brown, N.; Pennington, M., Studies of confinement: How the gluon propagates, Phys.Rev. D, 39, 2723 (1989)
[416] Fischer, C. S.; Alkofer, R.; Reinhardt, H., The elusiveness of infrared critical exponents in Landau gauge Yang-Mills theories, Phys. Rev. D, 65, Article 094008 pp. (2002), arXiv:hep-ph/0202195
[417] Fischer, C. S.; Alkofer, R., Infrared exponents and running coupling of SU(N) Yang-Mills theories, Phys. Lett. B, 536, 177-184 (2002), arXiv:hep-ph/0202202 · Zbl 0995.81512
[418] Sampaio, M. D.; Baeta Scarpelli, A. P.; Ottoni, J. E.; Nemes, M. C., Implicit regularization and renormalization of QCD, Int. J. Theor. Phys., 45, 436-457 (2006), arXiv:hep-th/0509102 [hep-th] · Zbl 1100.81506
[419] Cucchieri, A.; Maas, A.; Mendes, T., Infrared properties of propagators in Landau-gauge pure Yang-Mills theory at finite temperature, Phys. Rev. D, 75, Article 076003 pp. (2007), arXiv:hep-lat/0702022
[420] Ferreira, L. C.; Cherchiglia, A. L.; Hiller, B.; Sampaio, M.; Nemes, M. C., Momentum routing invariance in Feynman diagrams and quantum symmetry breakings, Phys. Rev. D, 86, Article 025016 pp. (2012), arXiv:1110.6186 [hep-th]
[421] Llanes-Estrada, F. J.; Williams, R., Two infrared Yang-Mills solutions in stochastic quantization and in an effective action formalism, Phys.Rev. D, 86, Article 065034 pp. (2012), arXiv:1207.5950 [hep-th]
[422] Meyers, J.; Swanson, E. S., The gluon propagator with two-loop Schwinger-Dyson equations, Phys. Rev. D, 90, Article 045037 pp. (2014), arXiv:1403.4350 [hep-ph]
[423] Aguilar, A. C.; Binosi, D.; Figueiredo, C. T.; Papavassiliou, J., Unified description of seagull cancellations and infrared finiteness of gluon propagators, Phys. Rev. D, 94, 4, Article 045002 pp. (2016), arXiv:1604.08456 [hep-ph]
[424] Collins, J., Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-product Expansion (2008), Cambridge University Press · Zbl 1094.53505
[425] Muta, T., Foundations of Quantum Chromodynamics (1998), World Scientific: World Scientific Singapore · Zbl 1192.81002
[426] Pennington, M.; Wilson, D., Are the dressed gluon and ghost propagators in the Landau gauge presently determined in the confinement regime of QCD?, Phys.Rev. D, 84, Article 119901 pp. (2011), arXiv:1109.2117 [hep-ph]
[427] Fischer, C. S., Nonperturbative propagators, running coupling and dynamical mass generation in ghost - anti-ghost symmetric gauges in QCD (2003), Eberhard-Karls-Universität zu Tübingen, arXiv:hep-ph/0304233
[428] Alles, B.; Henty, D.; Panagopoulos, H.; Parrinello, C.; Pittori, C.; Richards, D. G., \( \alpha_s\) From the nonperturbatively renormalised lattice three gluon vertex, Nucl. Phys. B, 502, 325-342 (1997), arXiv:hep-lat/9605033 [hep-lat]
[429] Deur, A.; Brodsky, S. J.; de Teramond, G. F., The QCD running coupling, Prog. Part. Nucl. Phys., 90, 1-74 (2016), arXiv:1604.08082 [hep-ph]
[430] von Smekal, L.; Maltman, K.; Sternbeck, A., The strong coupling and its running to four loops in a minimal MOM scheme, Phys. Lett. B, 681, 336-342 (2009), arXiv:0903.1696 [hep-ph]
[431] Boucaud, P.; De Soto, F.; Leroy, J.; Le Yaouanc, A.; Micheli, J.; Pene, O.; Rodriguez-Quintero, J., Ghost-gluon running coupling, power corrections and the determination of Lambda(MS-bar), Phys. Rev. D, 79, Article 014508 pp. (2009), arXiv:0811.2059 [hep-ph]
[432] Sternbeck, A.; Maltman, K.; von Smekal, L.; Williams, A.; Ilgenfritz, E.; Muller-Preussker, M., Running alpha(s) from Landau-gauge gluon and ghost correlations, PoS LATTICE2007, 256 (2007), arXiv:0710.2965 [hep-lat]
[433] Sternbeck, A.; Ilgenfritz, E.-M.; Maltman, K.; Muller-Preussker, M.; von Smekal, L., QCD lambda parameter from Landau-gauge gluon and ghost correlations, PoS LAT2009, 210 (2009), arXiv:1003.1585 [hep-lat]
[434] Blossier, B.; Boucaud, P.; De soto, F.; Morenas, V.; Gravina, M.; Pene, O.; Rodriguez-Quintero, J., Ghost-gluon coupling power corrections and \(\Lambda_{\overline{M S}}\) from twisted-mass lattice QCD at Nf=2, Phys. Rev. D, 82, Article 034510 pp. (2010), arXiv:1005.5290 [hep-lat]
[435] Blossier, B.; Boucaud, P.; Brinet, M.; De Soto, F.; Du, X.; Gravina, M.; Morenas, V.; Pene, O.; Petrov, K.; Rodriguez-Quintero, J., Ghost-gluon coupling, power corrections and \(\Lambda_{\overline{M S}}\) from lattice QCD with a dynamical charm, Phys. Rev. D, 85, Article 034503 pp. (2012), arXiv:1110.5829 [hep-lat]
[436] Blossier, B.; Boucaud, P.; Brinet, M.; De Soto, F.; Du, X.; Morenas, V.; Pene, O.; Petrov, K.; Rodriguez-Quintero, J., The strong running coupling at \(\tau\) and \(Z_0\) mass scales from lattice QCD, Phys. Rev. Lett., 108, Article 262002 pp. (2012), arXiv:1201.5770 [hep-ph]
[437] Sternbeck, A.; Maltman, K.; Muller-Preussker, M.; von Smekal, L., Determination of LambdaMS from the gluon and ghost propagators in Landau gauge, PoS LATTICE2012, 243 (2012), arXiv:1212.2039 [hep-lat]
[438] Blossier, B.; Boucaud, P.; Brinet, M.; De Soto, F.; Morenas, V.; Pene, O.; Petrov, K.; Rodriguez-Quintero, J., High statistics determination of the strong coupling constant in Taylor scheme and its OPE Wilson coefficient from lattice QCD with a dynamical charm, Phys. Rev. D, 89, 1, Article 014507 pp. (2014), arXiv:1310.3763 [hep-ph]
[439] Zafeiropoulos, S.; Boucaud, P.; De Soto, F.; Rodríguez-Quintero, J.; Segovia, J., Strong running coupling from the gauge sector of domain wall lattice QCD with physical quark masses, Phys. Rev. Lett., 122, 16, Article 162002 pp. (2019), arXiv:1902.08148 [hep-ph]
[440] Fischer, C. S.; Alkofer, R., Non-perturbative propagators, running coupling and dynamical quark mass of Landau gauge QCD, Phys. Rev. D, 67, Article 094020 pp. (2003), arXiv:hep-ph/0301094
[441] Fischer, C. S.; Müller, J. A., Chiral and deconfinement transition from Dyson-Schwinger equations, Phys. Rev. D, 80, Article 074029 pp. (2009), arXiv:0908.0007 [hep-ph]
[442] Contant, R.; Huber, M. Q., The quark propagator in QCD and \(G_2\) QCD, EPJ Web Conf., 137, 13003 (2017), arXiv:1612.00691 [hep-ph]
[443] M. Mitter, M. Hopfer, B.J. Schaefer, R. Alkofer, Center phase transition from matter propagators in (scalar) QCD. arXiv:1709.00299 [hep-ph]. · Zbl 1411.81225
[444] Maris, P.; Tandy, P. C., Bethe-salpeter study of vector meson masses and decay constants, Phys. Rev. C, 60, Article 055214 pp. (1999), arXiv:nucl-th/9905056 [nucl-th]
[445] Maris, P.; Roberts, C. D., Pi- and K meson Bethe-Salpeter amplitudes, Phys. Rev. C, 56, 3369-3383 (1997), arXiv:nucl-th/9708029 [nucl-th]
[446] Blank, M.; Krassnigg, A., The QCD chiral transition temperature in a Dyson-Schwinger-equation context, Phys. Rev. D, 82, Article 034006 pp. (2010), arXiv:1004.5301 [hep-ph]
[447] Huber, M. Q.; Alkofer, R.; Sorella, S. P., Non-perturbative analysis of the Gribov-Zwanziger action, AIP Conf. Proc., 1343, 158-160 (2011), arXiv:1010.4802 [hep-th]
[448] Huber, M. Q., Preliminary infrared analysis of Yang-Mills green functions in the maximally abelian gauge, Erstausgabe, 1, 251 (2008)
[449] Huber, M. Q., On Gauge Fixing Aspects of the Infrared Behavior of Yang-Mills Green Functions (2010), University of Graz, Springer theses series, arXiv:1005.1775 [hep-th]
[450] Huber, M. Q.; Alkofer, R.; Schwenzer, K., Infrared scaling solutions beyond the Landau gauge: The maximally abelian gauge and Abelian infrared dominance, PoS, FACESQCD, 001 (2010), arXiv:1103.0236 [hep-th]
[451] Bloch, J. C., Two loop improved truncation of the ghost gluon Dyson-Schwinger equations: Multiplicatively renormalizable propagators and nonperturbative running coupling, Few Body Syst., 33, 111-152 (2003), arXiv:hep-ph/0303125
[452] Mader, V.; Alkofer, R., Including 4-gluon interactions into Dyson-Schwinger studies, PoS CONFINEMENTX, 063 (2012), arXiv:1301.7498 [hep-th]
[453] Mader, V., Signals of Confinement in the Dyson-Schwinger Equation for the Gauge Boson Propagator (2014), University of Graz, arXiv:1412.6348 [hep-th]
[454] Halliday, I. G.; Ricotta, R. M., Negative dimensional integrals 1. Feynman graphs, Phys. Lett. B, 193, 241-246 (1987)
[455] Dunne, G. V.; Halliday, I. G., Negative dimensional integration. 2. Path integrals and fermionic equivalence, Phys. Lett. B, 193, 247 (1987)
[456] Dunne, G. V.; Halliday, I. G., Negative dimensional oscillators, Nucl. Phys. B, 308, 589-618 (1988)
[457] Ricotta, R., (Falomir, H., Negative Dimensions in Field Theory in J.J. Giambiagi Festschrift (1990)), 350
[458] Suzuki, A. T.; Schmidt, A. G.M., Ndim achievements: Massive arbitrary tensor rank and N- loop insertions in Feynman integrals, J. Phys. A, 33, 3713-3722 (2000), hep-th/0005082 · Zbl 0953.81054
[459] Jarrell, M.; Gubernatis, J. E., Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data, Phys. Rept., 269, 133-195 (1996) · Zbl 0886.62029
[460] Asakawa, M.; Hatsuda, T.; Nakahara, Y., Maximum entropy analysis of the spectral functions in lattice QCD, Prog. Part. Nucl. Phys., 46, 459-508 (2001), arXiv:hep-lat/0011040 [hep-lat]
[461] Ding, H. T.; Francis, A.; Kaczmarek, O.; Karsch, F.; Satz, H.; Soeldner, W., Charmonium properties in hot quenched lattice QCD, Phys. Rev. D, 86, Article 014509 pp. (2012), arXiv:1204.4945 [hep-lat]
[462] Nickel, D., Extraction of spectral functions from Dyson-Schwinger studies via the maximum entropy method, Annals Phys., 322, 1949-1960 (2007), arXiv:hep-ph/0607224 [hep-ph] · Zbl 1124.81038
[463] Mueller, J. A.; Fischer, C. S.; Nickel, D., Quark spectral properties above Tc from Dyson-Schwinger equations, Eur. Phys. J. C, 70, 1037-1049 (2010), arXiv:1009.3762 [hep-ph]
[464] S.-x. Qin, J. A.; Chang, L.; Y.-x. Liu, D.; Roberts, C. D., Quark spectral density and a strongly-coupled QGP, Phys. Rev. D, 84, Article 014017 pp. (2011), arXiv:1010.4231 [nucl-th]
[465] Qin, S.-x.; Rischke, D. H., Quark spectral function and deconfinement at nonzero temperature, Phys. Rev. D, 88, Article 056007 pp. (2013), arXiv:1304.6547 [nucl-th]
[466] Gao, F.; Qin, S.-X.; Liu, Y.-X.; Roberts, C. D.; Schmidt, S. M., Zero mode in a strongly coupled quark gluon plasma, Phys. Rev. D, 89, 7, Article 076009 pp. (2014), arXiv:1401.2406 [nucl-th]
[467] Rothkopf, A., Bayesian inference of nonpositive spectral functions in quantum field theory, Phys. Rev. D, 95, 5, Article 056016 pp. (2017), arXiv:1611.00482 [hep-ph]
[468] Ilgenfritz, E.-M.; Pawlowski, J. M.; Rothkopf, A.; Trunin, A., Eur. Phys. J. C, 78, 2, 127 (2018), arXiv:1701.08610 [hep-lat]
[469] Fischer, C. S.; Pawlowski, J. M.; Rothkopf, A.; Welzbacher, C. A., Bayesian analysis of quark spectral properties from the Dyson-Schwinger equation, Phys. Rev. D, 98, 1, Article 014009 pp. (2018), arXiv:1705.03207 [hep-ph]
[470] Brandt, B. B.; Francis, A.; Meyer, H. B.; Robaina, D., Pion quasiparticle in the low-temperature phase of QCD, Phys. Rev. D, 92, 9, Article 094510 pp. (2015), arXiv:1506.05732 [hep-lat]
[471] Brandt, B. B.; Francis, A.; J��ger, B.; Meyer, H. B., Charge transport and vector meson dissociation across the thermal phase transition in lattice QCD with two light quark flavors, Phys. Rev. D, 93, 5, Article 054510 pp. (2016), arXiv:1512.07249 [hep-lat]
[472] Ding, H.-T.; Kaczmarek, O.; Meyer, F., Vector spectral functions and transport properties in quenched QCD, PoS LATTICE2014, 216 (2015), arXiv:1412.5869 [hep-lat]
[473] Vidberg, H. J.; Serene, J. W., Solving the Eliashberg equations by means of N-point Padé approximants, J. Low Temp. Phys., 29, 179-192 (1977)
[474] Schlessinger, L., Use of analyticity in the calculation of nonrelativistic scattering amplitudes, Phys. Rev., 167, 3, 1411 (1968)
[475] Tripolt, R.-A.; Haritan, I.; Wambach, J.; Moiseyev, N., Threshold energies and poles for hadron physical problems by a model-independent universal algorithm, Phys. Lett. B, 774, 411-416 (2017), arXiv:1610.03252 [hep-ph]
[476] Weil, E.; Eichmann, G.; Fischer, C. S.; Williams, R., Electromagnetic decays of the neutral pion, Phys. Rev. D, 96, 1, Article 014021 pp. (2017), arXiv:1704.06046 [hep-ph]
[477] Strauss, S.; Fischer, C. S.; Kellermann, C., Analytic structure of Landau gauge ghost and gluon propagators, Prog. Part. Nucl. Phys., 67, 239-244 (2012)
[478] Widder, D. V., An Introduction to Transform Theory (1971), Academic Press · Zbl 0219.44001
[479] Debnath, L.; Bhatta, D., Integral Transforms and Their Applications (2007), Taylor and Francis Group
[480] Dudal, D.; Guimaraes, M. S., On the computation of the spectral density of two-point functions: Complex masses, cut rules and beyond, Phys. Rev. D, 83, Article 045013 pp. (2011), arXiv:1012.1440 [hep-th]
[481] Osterwalder, K.; Schrader, R., Axioms for Euclidean green’s functions. 2, Commun. Math. Phys., 42, 281 (1975) · Zbl 0303.46034
[482] Osterwalder, K.; Schrader, R., Axioms for Euclidean green’s functions, Commun. Math. Phys., 31, 83-112 (1973) · Zbl 0274.46047
[483] Kern, W.; Huber, M. Q.; Alkofer, R., Spectral dimension as a tool for analyzing nonperturbative propagators, Phys. Rev. D, 100, 9, Article 094037 pp. (2019), arXiv:1909.12207 [hep-th]
[484] Cucchieri, A.; Mendes, T.; Taurines, A. R., Positivity violation for the lattice Landau gluon propagator, Phys. Rev. D, 71, Article 051902 pp. (2005), arXiv:hep-lat/0406020
[485] Maas, A.; Wambach, J.; Grüter, B.; Alkofer, R., High-temperature limit of Landau-gauge Yang-Mills theory, Eur. Phys. J. C, 37, 335-357 (2004), hep-ph/0408074 · Zbl 1191.81159
[486] Bowman, P. O.; Heller, U. M.; L. D.B, B.; P. M.B, R.; Andre, S.; von Smekal, L.; Williams, A. G.; Zhang, J.-b., Scaling behavior and positivity violation of the gluon propagator in full QCD, Phys. Rev. D, 76, Article 094505 pp. (2007), arXiv:hep-lat/0703022
[487] Gracey, J. A., Off-shell two-loop QCD vertices, Phys. Rev. D, 90, 2, Article 025014 pp. (2014), arXiv:1406.0649 [hep-ph]
[488] K. Chetyrkin, A. Retey, Three loop three linear vertices and four loop similar to MOM beta functions in massless QCD. arXiv:hep-ph/0007088.
[489] Chetyrkin, K.; Seidensticker, T., Two loop QCD vertices and three loop MOM beta functions, Phys. Lett. B, 495, 74-80 (2000), arXiv:hep-ph/0008094 [hep-ph]
[490] Davydychev, A. I.; Osland, P.; Tarasov, O. V., Three-gluon vertex in arbitrary gauge and dimension, Phys. Rev. D, 54, 4087-4113 (1996), arXiv:hep-ph/9605348
[491] Davydychev, A. I.; Osland, P.; Tarasov, O. V., Two loop three gluon vertex in zero momentum limit, Phys. Rev. D, 58, Article 036007 pp. (1998), arXiv:hep-ph/9801380 [hep-ph]
[492] Davydychev, A. I.; Osland, P., On-shell two loop three gluon vertex, Phys. Rev. D, 59, Article 014006 pp. (1999), arXiv:hep-ph/9806522 [hep-ph]
[493] Gracey, J. A., Two loop QCD vertices at the symmetric point, Phys. Rev. D, 84, Article 085011 pp. (2011), arXiv:1108.4806 [hep-ph]
[494] A. Sternbeck, The infrared behavior of lattice QCD Green’s functions, PhD thesis, Humboldt-Universität zu Berlin, 2006, arXiv:hep-lat/0609016.
[495] K. Schwenzer, Private Communication, 2008.
[496] Huber, M. Q.; Blum, A. L.; Mitter, M.; von Smekal, L., On propagators and vertices of Landau gauge Yang-Mills theory, PoS, QCD-TNT-III, 018 (2013), arXiv:1401.5241 [hep-ph]
[497] Vujinovic, M.; Alkofer, R.; Eichmann, G.; Williams, R., Non-perturbative features of the three-gluon vertex in Landau gauge, Acta Phys. Polon. Supp., 7, 3, 607 (2014), arXiv:1404.4474 [hep-ph]
[498] Alkofer, R.; Eichmann, G.; Fischer, C. S.; Hopfer, M.; Vujinovic, M.; Williams, R.; Windisch, A., On propagators and three-point functions in Landau gauge QCD and QCD-like theories, PoS, QCD-TNT-III, 003 (2013), arXiv:1405.7310 [hep-ph]
[499] Huber, M. Q.; Alkofer, R.; Schwenzer, K., Infrared behavior of 3-point functions in Landau gauge Yang-Mills theory, PoS CONFINEMENT8, 174 (2008), arXiv:0812.4451 [hep-ph]
[500] Boucaud, P.; Leroy, J.; Le Yaouanc, A.; Lokhov, A.; Micheli, J.; Pene, O.; Rodriguez-Quintero, J.; Roiesnel, C., Divergent IR gluon propagator from Ward-Slavnov-Taylor identities?, JHEP, 03, 076 (2007), arXiv:hep-ph/0702092
[501] Brandt, F. T.; Frenkel, J., Infrared behavior of three and four gluon vertices in Yang-Mills theory, Phys. Rev. D, 33, 464 (1986)
[502] Ahmadiniaz, N.; Schubert, C.; Villanueva, V. M., String-inspired representations of photon/gluon amplitudes, JHEP, 01, 132 (2013), arXiv:1211.1821 [hep-th]
[503] Ahmadiniaz, N.; Schubert, C., A compact representation of the three-gluon vertex, Frascati Phys. Ser., 55, 1-6 (2012), arXiv:1206.1843 [hep-ph]
[504] Ahmadiniaz, N.; Schubert, C., A covariant representation of the Ball-Chiu vertex, Nucl. Phys. B, 869, 417-439 (2013), arXiv:1210.2331 [hep-ph] · Zbl 1262.81185
[505] Ahmadiniaz, N.; Schubert, C., QCD gluon vertices from the string-inspired formalism, Int. J. Mod. Phys. E, 25, 07, Article 1642004 pp. (2016)
[506] Ahmadiniaz, N.; Schubert, C., Worldline calculation of the three-gluon vertex, AIP Conf. Proc., 1492, 199-204 (2012)
[507] Kellermann, C.; Fischer, C. S., The running coupling from the four-gluon vertex in Landau gauge Yang-Mills theory, Phys. Rev. D, 78, Article 025015 pp. (2008), arXiv:0801.2697 [hep-ph]
[508] Kellermann, C.; Fischer, C. S., The four-gluon vertex and the running coupling in Landau gauge Yang-Mills theory, (Proceedings, 1st Workshop on Excited QCD 2009: Zakopane, Poland, February 8-14, 2009 (2009)), arXiv:0905.2506 [hep-ph]
[509] Binosi, D.; Ibañez, D.; Papavassiliou, J., Nonperturbative study of the four gluon vertex, JHEP, 1409, 059 (2014), arXiv:1407.3677 [hep-ph]
[510] Huber, M. Q.; Cyrol, A. K.; von Smekal, L., On Dyson-Schwinger studies of Yang-Mills theory and the four-gluon vertex, Acta Phys. Polon. Supp., 8, 2, 497 (2015), arXiv:1506.03908 [hep-ph]
[511] Huber, M. Q., A non-perturbative study of the correlation functions of three-dimensional Yang-Mills theory, Acta Phys. Polon. Supp., 9, 389 (2016), arXiv:1606.02068 [hep-th]
[512] Huber, M. Q., Gluonic vertices and the gluon propagator in Landau gauge Yang-Mills theory, Acta Phys. Polon. Supp., 13, 133 (2020), arXiv:1909.10867 [hep-ph]
[513] Gracey, J. A., Symmetric point quartic gluon vertex and momentum subtraction, Phys. Rev. D, 90, 2, Article 025011 pp. (2014), arXiv:1406.1618 [hep-ph]
[514] Gracey, J. A., Symmetric point four-point functions at one loop in QCD, Phys. Rev. D, 95, 6, Article 065013 pp. (2017), arXiv:1703.01094 [hep-ph]
[515] Ahmadiniaz, N.; Schubert, C., Form factor decomposition of the off-shell four-gluon amplitudes, PoS, QCD-TNT-III, 002 (2013), arXiv:1311.6829 [hep-ph]
[516] Maas, A., On the gauge-algebra dependence of Landau-gauge Yang-Mills propagators, JHEP, 02, 076 (2011), arXiv:1012.4284 [hep-lat] · Zbl 1294.81120
[517] Maas, A., More on the properties of the first Gribov region in Landau gauge, Phys. Rev. D, 93, 5, Article 054504 pp. (2016), arXiv:1510.08407 [hep-lat]
[518] Alkofer, R.; Fischer, C. S.; Huber, M. Q.; Schwenzer, K., Lower dimensional Yang-Mills theory as a laboratory to study the infrared regime, PoS LATTICE2007, 329 (2007), arXiv:0710.1054 [hep-ph]
[519] Aguilar, A. C.; Binosi, D.; Papavassiliou, J., Nonperturbative gluon and ghost propagators for d=3 Yang-Mills, Phys. Rev. D, 81, Article 125025 pp. (2010), arXiv:1004.2011 [hep-ph]. Decoupling 3d
[520] J.M. Cornwall, Exploring dynamical gluon mass generation in three dimensions, arXiv:1510.03453 [hep-ph].
[521] Dudal, D.; Gracey, J. A.; Sorella, S. P.; Vandersickel, N.; Verschelde, H., The Landau gauge gluon and ghost propagator in the refined Gribov-Zwanziger framework in 3 dimensions, Phys. Rev. D, 78, Article 125012 pp. (2008), arXiv:0808.0893 [hep-th]
[522] Jackiw, R.; Templeton, S., How superrenormalizable interactions cure their infrared divergences, Phys. Rev. D, 23, 2291 (1981)
[523] A. Maas, private communication.
[524] Cyrol, A. K., Non-perturbative QCD Correlation Functions, PhD thesis (2017), Universität Heidelberg, http://archiv.ub.uni-heidelberg.de/volltextserver/23766/
[525] Cucchieri, A.; Mendes, T., The saga of Landau-gauge propagators: Gathering new ammo, AIP Conf. Proc., 1343, 185-187 (2011), arXiv:1101.4779 [hep-lat]
[526] Dudal, D.; Sorella, S. P.; Vandersickel, N.; Verschelde, H., The effects of gribov copies in 2D gauge theories, Phys. Lett. B, 680, 377-383 (2009), arXiv:0808.3379 [hep-th]
[527] Cucchieri, A.; Dudal, D.; Vandersickel, N., The no-pole condition in Landau gauge: Properties of the gribov ghost form-factor and a constraint on the 2d gluon propagator, Phys. Rev. D, 85, Article 085025 pp. (2012), arXiv:1202.1912 [hep-th]
[528] D. Zwanziger, Some exact properties of the gluon propagator, arXiv:1209.1974 [hep-ph]. · Zbl 0125.22001
[529] Zwanziger, D., No confinement without Coulomb confinement, Phys. Rev. Lett., 90, Article 102001 pp. (2003), arXiv:hep-lat/0209105 [hep-lat]
[530] Leibbrandt, G., Introduction to noncovariant gauges, Rev. Mod. Phys., 59, 1067 (1987)
[531] Palumbo, F., Quantization of gauge theories on a torus, Phys. Lett. B, 173, 81-85 (1986)
[532] Palumbo, F., Exact evaluation of the Faddeev-Popov determinant in a complete axial gauge on a torus, Phys. Lett. B, 243, 109-115 (1990)
[533] de Forcrand, P.; Pepe, M., Laplacian gauge and instantons, Nucl. Phys. Proc. Suppl., 94, 498-501 (2001), arXiv:hep-lat/0010093 [hep-lat]. [, 498(2000)]
[534] Maas, A.; Cucchieri, A.; Mendes, T., Propagators in Yang-Mills theory for different gauges, PoS CONFINEMENT8, 181 (2008), arXiv:hep-lat/0610123 [hep-lat]
[535] Cucchieri, A.; Maas, A.; Mendes, T., Infrared-suppressed gluon propagator in 4-D Yang-Mills theory in a Landau-like gauge, Mod. Phys. Lett. A, 22, 2429-2438 (2007), arXiv:hep-lat/0701011 [hep-lat]
[536] Maas, A.; Mendes, T.; Olejnik, S., Yang-Mills theory in lambda-gauges, Phys. Rev. D, 84, Article 114501 pp. (2011), arXiv:1108.2621 [hep-lat]
[537] Dudal, D.; Gracey, J.; Lemes, V.; Sarandy, M.; Sobreiro, R. F.; Sorella, S. P.; Verschelde, H., An analytic study of the off-diagonal mass generation for Yang-Mills theories in the maximal Abelian gauge, Phys. Rev. D, 70, Article 114038 pp. (2004), arXiv:hep-th/0406132
[538] Capri, M. A.L.; Sobreiro, R. F.; Sorella, S. P., Interpolating among the Landau, Coulomb and maximal Abelian gauges, Phys. Rev. D, 73, Article 041701 pp. (2006), arXiv:hep-th/0512096
[539] Capri, M. A.L.; Sobreiro, R. F.; Sorella, S. P.; Thibes, R., Renormalizability of a generalized gauge fixing interpolating among the Coulomb, Landau and maximal Abelian gauges, Annals Phys., 322, 1776-1789 (2007), arXiv:hep-th/0607117 [hep-th] · Zbl 1119.81075
[540] Dudal, D.; Gracey, J. A.; Lemes, V. E.R.; Sobreiro, R. F.; Sorella, S. P.; Thibes, R.; Verschelde, H., Remarks on a class of renormalizable interpolating gauges, JHEP, 07, 059 (2005), arXiv:hep-th/0505037 [hep-th]
[541] Capri, M. A.L.; Dudal, D.; Fiorentini, D.; Guimaraes, M. S.; Justo, I. F.; Pereira, A. D.; Mintz, B. W.; Palhares, L. F.; Sobreiro, R. F.; Sorella, S. P., Local and BRST-invariant Yang-Mills theory within the Gribov horizon, Phys. Rev. D, 94, 2, Article 025035 pp. (2016), arXiv:1605.02610 [hep-th]
[542] Giusti, L., Lattice gauge fixing for generic covariant gauges, Nucl.Phys. B, 498, 331-344 (1997), arXiv:hep-lat/9605032 [hep-lat]
[543] Cucchieri, A.; Mendes, T.; Santos, E. M., Covariant gauge on the lattice: A new implementation, Phys. Rev. Lett., 103, Article 141602 pp. (2009), arXiv:0907.4138 [hep-lat]
[544] Aguilar, A.; Binosi, D.; Papavassiliou, J., Yang-mills two-point functions in linear covariant gauges, Phys. Rev. D, 91, Article 085014 pp. (2015), arXiv:1501.07150 [hep-ph]
[545] Litim, D. F.; Pawlowski, J. M., Flow equations for Yang-Mills theories in general axial gauges, Phys.Lett. B, 435, 181-188 (1998), arXiv:hep-th/9802064 [hep-th]
[546] Freire, F.; Litim, D. F.; Pawlowski, J. M., Gauge invariance and background field formalism in the exact renormalization group, Phys. Lett. B, 495, 256-262 (2000), arXiv:hep-th/0009110 [hep-th]
[547] Bicudo, P.; Binosi, D.; Cardoso, N.; Oliveira, O.; Silva, P. J., Lattice gluon propagator in renormalizable \(\xi\) gauges, Phys. Rev. D, 92, 11, Article 114514 pp. (2015), arXiv:1505.05897 [hep-lat]
[548] Capri, M. A.L.; Pereira, A. D.; Sobreiro, R. F.; Sorella, S. P., Non-perturbative treatment of the linear covariant gauges by taking into account the gribov copies, Eur. Phys. J. C, 75, 10, 479 (2015), arXiv:1505.05467 [hep-th]
[549] Capri, M. A.L.; Dudal, D.; Pereira, A. D.; Fiorentini, D.; Guimaraes, M. S.; Mintz, B. W.; Palhares, L. F.; Sorella, S. P., Nonperturbative aspects of Euclidean Yang-Mills theories in linear covariant gauges: Nielsen identities and a BRST-invariant two-point correlation function, Phys. Rev. D, 95, 4, Article 045011 pp. (2017), arXiv:1611.10077 [hep-th]
[550] T. De Meerleer, D. Dudal, S.P. Sorella, P. Dall’Olio, A. Bashir, A fresh look at the (non-)Abelian Landau-Khalatnikov-Fradkin transformations. arXiv:1801.01703 [hep-th].
[551] T. De Meerleer, D. Dudal, S.P. Sorella, P. Dall’Olio, A. Bashir, Landau-Khalatnikov-Fradkin Transformations, Nielsen Identities, Their Equivalence and Implications for QCD. arXiv:1911.01907 [hep-th].
[552] Cucchieri, A.; Dudal, D.; Mendes, T.; Oliveira, O.; Roelfs, M.; Silva, P. J., Lattice computation of the ghost propagator in linear covariant gauges, PoS LATTICE2018, 252 (2018), arXiv:1811.11521
[553] Mandelstam, S., Vortices and quark confinement in nonabelian gauge theories, Phys. Rept., 23, 245-249 (1976)
[554] G. ’t Hooft, Gauge Fields with Unified Weak, Electromagnetic, and Strong Interactions. Rapporteur’s talk given at Int. Conf. on High Energy Physics, Palermo, Italy, 1975, pp. 23-28.
[555] Kronfeld, A. S.; Laursen, M. L.; Schierholz, G.; Wiese, U. J., Monopole condensation and color confinement, Phys. Lett. B, 198, 516 (1987)
[556] Kronfeld, A. S.; Schierholz, G.; Wiese, U. J., Topology and dynamics of the confinement mechanism, Nucl. Phys. B, 293, 461 (1987)
[557] Di Giacomo, A., Mechanisms of color confinement, Acta Phys. Polon. B, 25, 215-226 (1994)
[558] Del Debbio, L.; Di Giacomo, A.; Paffuti, G.; Pieri, P., Color confinement as dual Meissner effect: SU(2) gauge theory, Phys. Lett. B, 355, 255-259 (1995), arXiv:hep-lat/9505014 [hep-lat]
[559] Di Giacomo, A.; Paffuti, G., A disorder parameter for dual superconductivity in gauge theories, Phys. Rev. D, 56, 6816-6823 (1997), arXiv:hep-lat/9707003 [hep-lat]
[560] Di Giacomo, A.; Lucini, B.; Montesi, L.; Paffuti, G., Color confinement and dual superconductivity of the vacuum, 1., Phys. Rev. D, 61, Article 034503 pp. (2000), arXiv:hep-lat/9906024 [hep-lat]
[561] Bonati, C.; Cossu, G.; D’Elia, M.; Di Giacomo, A., The disorder parameter of dual superconductivity in QCD revisited, Phys. Rev. D, 85, Article 065001 pp. (2012), arXiv:1111.1541 [hep-lat]
[562] A. Di Giacomo, QCD monopoles, abelian projections and gauge invariance. arXiv:1707.07896 [hep-lat].
[563] ’t Hooft, G., Topology of the gauge condition and new confinement phases in nonabelian gauge theories, Nucl. Phys. B, 190, 455 (1981)
[564] Chernodub, M. N.; Polikarpov, M. I., Abelian projections and monopoles, (Confinement, Duality, and Nonperturbative Aspects of QCD. Proceedings, NATO Advanced Study Institute, Newton Institute Workshop, Cambridge, UK, June 23-July 4, 1997 (1997)), 387-414, arXiv:hep-th/9710205 [hep-th]
[565] Ezawa, Z. F.; Iwazaki, A., Abelian dominance and quark confinement in Yang-Mills theories, Phys. Rev. D, 25, 2681 (1982)
[566] Suzuki, T.; Yotsuyanagi, I., A possible evidence for Abelian dominance in quark confinement, Phys. Rev. D, 42, 4257-4260 (1990)
[567] Polikarpov, M. I., Recent results on the abelian projection of lattice gluodynamics, Nucl. Phys. Proc. Suppl., 53, 134-140 (1997), arXiv:hep-lat/9609020 [hep-lat]
[568] Stack, J. D.; Neiman, S. D.; Wensley, R. J., String tension from monopoles in SU(2) lattice gauge theory, Phys. Rev. D, 50, 3399-3405 (1994), arXiv:hep-lat/9404014
[569] Shiba, H.; Suzuki, T., Monopoles and string tension in SU(2) QCD, Phys. Lett. B, 333, 461-466 (1994), arXiv:hep-lat/9404015
[570] Nishino, S.; Matsudo, R.; Warschinke, M.; Kondo, K.-I., Magnetic monopoles in pure \(S U ( 2 )\) yang-mills theory with a gauge-invariant mass, PTEP, 2018, 10, 103B04 (2018), arXiv:1803.04339 · Zbl 07408465
[571] Min, H.; Lee, T.; Pac, P. Y., Renormalization of Yang-Mills Theory in the Abelian Gauge, Phys. Rev. D, 32, 440 (1985)
[572] Fazio, A. R.; Lemes, V. E.R.; Sarandy, M. S.; Sorella, S. P., The diagonal ghost equation ward identity for Yang-Mills theories in the maximal Abelian gauge, Phys. Rev. D, 64, Article 085003 pp. (2001), arXiv:hep-th/0105060
[573] M.A.L. Capri, A.J. Gomez, M.S. Guimaraes, V.E.R. Lemes, S.P. Sorella, Study of the properties of the Gribov region in SU(N) Euclidean Yang-Mills theories in the maximal Abelian gauge. arXiv:1002.1659 [hep-th]. · Zbl 1191.81195
[574] Gracey, J. A., Three loop ms-bar renormalization of QCD in the maximal Abelian gauge, JHEP, 04, 012 (2005), arXiv:hep-th/0504051 [hep-th]
[575] Bell, J. M.; Gracey, J. A., Momentum subtraction scheme renormalization group functions in the maximal Abelian gauge, Phys. Rev. D, 88, 8, Article 085027 pp. (2013), arXiv:1310.0243 [hep-ph]
[576] Bell, J. M.; Gracey, J. A., Maximal abelian and Curci-Ferrari gauges in momentum subtraction at three loops, Phys. Rev. D, 92, Article 125001 pp. (2015), arXiv:1511.00854 [hep-th]
[577] Bornyakov, V. G.; Chernodub, M. N.; Gubarev, F. V.; Morozov, S. M.; Polikarpov, M. I., Abelian dominance and gluon propagators in the maximally Abelian gauge of SU(2) lattice gauge theory, Phys. Lett. B, 559, 214-222 (2003), arXiv:hep-lat/0302002 · Zbl 1094.81525
[578] Mendes, T.; Cucchieri, A.; Mihara, A., Infrared maximally abelian gauge, AIP Conf. Proc., 892, 203-205 (2007), arXiv:hep-lat/0611002
[579] Gongyo, S.; Iritani, T.; Suganuma, H., Off-diagonal gluon mass generation and infrared abelian dominance in maximally abelian gauge in SU(3) Lattice QCD, Phys. Rev. D, 86, Article 094018 pp. (2012), arXiv:1207.4377 [hep-lat]
[580] Gongyo, S.; Suganuma, H., Gluon propagators in maximally abelian gauge in SU(3) Lattice QCD, Phys. Rev. D, 87, Article 074506 pp. (2013), arXiv:1302.6181 [hep-lat]
[581] S. Gongyo, Two-dimensional gluon propagators in maximally Abelian gauge in SU(2) Lattice QCD. arXiv:1411.2211 [hep-lat].
[582] Schröck, M.; Vogt, H., Lattice QCD green’s functions in maximally abelian gauge: Infrared abelian dominance and the quark sector, Phys. Rev. D, 93, 1, Article 014501 pp. (2016), arXiv:1504.05545 [hep-lat]
[583] Gongyo, S.; Iida, H., Gribov-Zwanziger action in SU(2) maximally Abelian gauge with \(U(1){}_3\) Landau gauge, Phys. Rev. D, 89, 2, Article 025022 pp. (2014), arXiv:1310.4877 [hep-th]
[584] Alkofer, R.; Huber, M. Q.; Mader, V.; Windisch, A., On the infrared behaviour of QCD green functions in the maximally abelian gauge, PoS, QCD-TNT-II, 003 (2011), arXiv:1112.6173 [hep-th]
[585] Capri, M. A.L.; Gomez, A. J.; Lemes, V. E.R.; Sobreiro, R. F.; Sorella, S. P., Study of the gribov region in Euclidean Yang-Mills theories in the maximal abelian gauge, Phys. Rev. D, 79, Article 025019 pp. (2009), arXiv:0811.2760 [hep-th] · Zbl 1191.81195
[586] Reinhardt, H.; Epple, D., The ’t Hooft loop in the Hamiltonian approach to Yang-Mills theory in coulomb gauge, Phys. Rev. D, 76, Article 065015 pp. (2007), arXiv:0706.0175 [hep-th]
[587] Reinhardt, H., The dielectric function of the QCD vacuum, Phys. Rev. Lett., 101, Article 061602 pp. (2008), arXiv:0803.0504 [hep-th]
[588] Reinhardt, H.; Campagnari, D. R.; Szczepaniak, A. P., Variational approach to Yang-Mills theory at finite temperatures, Phys. Rev. D, 84, Article 045006 pp. (2011), arXiv:1107.3389 [hep-th]
[589] Heffner, J.; Reinhardt, H.; Campagnari, D. R., The deconfinement phase transition in the Hamiltonian approach to Yang-Mills theory in Coulomb gauge, Phys. Rev. D, 85, Article 125029 pp. (2012), arXiv:1206.3936 [hep-th]
[590] Reinhardt, H.; Heffner, J., The effective potential of the confinement order parameter in the Hamilton approach, Phys. Lett. B, 718, 672-677 (2012), arXiv:1210.1742 [hep-th]
[591] Reinhardt, H.; Heffner, J., Effective potential of the confinement order parameter in the Hamiltonian approach, Phys. Rev. D, 88, Article 045024 pp. (2013), arXiv:1304.2980 [hep-th]
[592] Reinhardt, H.; Vastag, P., Chiral and deconfinement phase transition in the Hamiltonian approach to QCD in Coulomb gauge, Phys. Rev. D, 94, 10, Article 105005 pp. (2016), arXiv:1605.03740 [hep-th]
[593] E. Ebadati, H. Reinhardt, P. Vastag, Chiral symmetry restoration at finite temperature within the Hamiltonian approach to QCD in Coulomb gaugearXiv:1706.06966 [hep-ph].
[594] Epple, D.; Reinhardt, H.; Schleifenbaum, W., Confining solution of the Dyson-Schwinger equations in Coulomb gauge, Phys. Rev. D, 75, Article 045011 pp. (2007), arXiv:hep-th/0612241
[595] Guimaraes, M. S.; Mintz, B. W.; Sorella, S. P., Dimension two condensates in the Gribov-Zwanziger theory in Coulomb gauge, Phys. Rev. D, 91, 12, Article 121701 pp. (2015), arXiv:1503.03120 [hep-th]
[596] Campagnari, D. R.; Reinhardt, H.; Huber, M. Q.; Vastag, P.; Ebadati, E., Dyson-schwinger approach to Hamiltonian QCD, EPJ Web Conf., 137, 03004 (2017), arXiv:1610.06456 [hep-th]
[597] Burgio, G.; Quandt, M.; Reinhardt, H., Coulomb gauge gluon propagator and the Gribov formula, Phys. Rev. Lett., 102, Article 032002 pp. (2009), arXiv:0807.3291 [hep-lat]
[598] Burgio, G.; Quandt, M.; Reinhardt, H.; Vogt, H., Gribov horizon and gribov copies effect in lattice Coulomb gauge, Phys. Rev. D, 95, 1, Article 014503 pp. (2017), arXiv:1608.05795 [hep-lat]
[599] Vastag, P.; Reinhardt, H.; Campagnari, D., Improved variational approach to QCD in Coulomb gauge, Phys. Rev. D, 93, 6, Article 065003 pp. (2016), arXiv:1512.06733 [hep-ph]
[600] Campagnari, D. R.; Ebadati, E.; Reinhardt, H.; Vastag, P., Revised variational approach to QCD in Coulomb gauge, Phys. Rev. D, 94, 7, Article 074027 pp. (2016), arXiv:1608.06820 [hep-ph]
[601] Campagnari, D.; Reinhardt, H., Variational and Dyson-Schwinger equations of Hamiltonian quantum chromodynamics, Phys. Rev. D, 97, 5, Article 054027 pp. (2018), arXiv:1801.02045 [hep-th]
[602] Campagnari, D.; Reinhardt, H., Equal-time quark propagator in coulomb gauge, Phys. Rev. D, 100, 11, Article 114042 pp. (2019), arXiv:1911.04158 [hep-ph]
[603] Binosi, D.; Theussl, L., JaxoDraw: A graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun., 161, 76-86 (2004), arXiv:hep-ph/0309015
[604] Curci, G.; Ferrari, R., Slavnov transformations and supersymmetry, Phys. Lett., 63B, 91-94 (1976)
[605] Baulieu, L.; Thierry-Mieg, J., The principle of BRS symmetry: An alternative approach to Yang-Mills theories, Nucl. Phys. B, 197, 477 (1982)
[606] Thierry-Mieg, J., Ghost creating gauges in Yang-Mills Theory, Nucl. Phys. B, 261, 55-65 (1985)
[607] Alkofer, R.; Fischer, C. S.; Reinhardt, H.; von Smekal, L., On the infrared behaviour of gluons and ghosts in ghost- antighost symmetric gauges, Phys. Rev. D, 68, Article 045003 pp. (2003), arXiv:hep-th/0304134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.