×

(Non-)aligned gauges and global gauge symmetry breaking. (English) Zbl 1260.81132

Summary: The concept of (global) gauge symmetry breaking plays an important role in many areas of physics. Since the corresponding symmetry is a gauge symmetry, its breaking is actually gauge-dependent. Thus, it is possible to design gauges which restore the symmetry as good as possible. Such gauge constructions will be detailed here, illustrated with the use of lattice gauge theory. Their use will be discussed for the cases of the Higgs effect, high-baryon density color superconductors, and BRST symmetry.

MSC:

81R40 Symmetry breaking in quantum theory
81T13 Yang-Mills and other gauge theories in quantum field theory
81T70 Quantization in field theory; cohomological methods

References:

[1] DOI: 10.1007/978-3-322-80160-9 · doi:10.1007/978-3-322-80160-9
[2] DOI: 10.1103/PhysRevD.19.3682 · doi:10.1103/PhysRevD.19.3682
[3] DOI: 10.1103/PhysRevD.78.025018 · doi:10.1103/PhysRevD.78.025018
[4] DOI: 10.1103/PhysRevD.78.085004 · doi:10.1103/PhysRevD.78.085004
[5] DOI: 10.1103/PhysRevD.12.3978 · doi:10.1103/PhysRevD.12.3978
[6] DOI: 10.1006/aphy.1994.1059 · Zbl 0806.53071 · doi:10.1006/aphy.1994.1059
[7] DOI: 10.1142/S0217751X1105292X · Zbl 1214.81112 · doi:10.1142/S0217751X1105292X
[8] DOI: 10.1006/aphy.2000.6072 · Zbl 1058.81592 · doi:10.1006/aphy.2000.6072
[9] DOI: 10.1016/0550-3213(81)90448-X · doi:10.1016/0550-3213(81)90448-X
[10] DOI: 10.1016/0370-2693(80)90594-8 · doi:10.1016/0370-2693(80)90594-8
[11] Shifman M., Advanced Topics in Quantum Field Theory: A Lecture Course (2012) · Zbl 1247.81007
[12] Maas A., Eur. Phys. J. C 71 pp 1548–
[13] DOI: 10.1016/0550-3213(79)90052-X · doi:10.1016/0550-3213(79)90052-X
[14] DOI: 10.1016/0370-2693(87)90974-9 · doi:10.1016/0370-2693(87)90974-9
[15] DOI: 10.1016/j.physletb.2005.01.061 · doi:10.1016/j.physletb.2005.01.061
[16] DOI: 10.1103/PhysRevD.78.085016 · doi:10.1103/PhysRevD.78.085016
[17] DOI: 10.1016/0550-3213(78)90175-X · doi:10.1016/0550-3213(78)90175-X
[18] DOI: 10.1103/PhysRevD.78.065047 · doi:10.1103/PhysRevD.78.065047
[19] DOI: 10.1007/978-3-642-13293-3_3 · doi:10.1007/978-3-642-13293-3_3
[20] DOI: 10.1103/PhysRevLett.3.77 · doi:10.1103/PhysRevLett.3.77
[21] Stratonovich R., Dokl. Akad. Nauk. 115 pp 1097–
[22] DOI: 10.1103/PhysRevD.73.114028 · doi:10.1103/PhysRevD.73.114028
[23] DOI: 10.1103/PhysRevD.74.114015 · doi:10.1103/PhysRevD.74.114015
[24] DOI: 10.1103/PhysRevD.77.114010 · doi:10.1103/PhysRevD.77.114010
[25] DOI: 10.1016/j.physrep.2004.11.004 · doi:10.1016/j.physrep.2004.11.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.