×

On spectra realizable and diagonalizably realizable. (English) Zbl 1461.15019

The manuscript deals with nonnegative inverse eigenvalue problems. The set of complex numbers \(\Lambda=\{\lambda_1, \lambda_2, \ldots, \lambda_n\}\) is said to be realizable, if there is an \(n \times n\) nonnegative matrix \(A\) with spectrum \(\Lambda\), with \(\lambda_1\) being the Perron eigenvalue. In this case, \(A\) is said to be a realizing matrix. \(\Lambda\) is diagonalizably realizable if a realizing matrix for \(\Lambda\) is diagonalizable, and it is universally realizable if it is realizable for every possible Jordan canonical form allowed by \(\Lambda\).
In this paper, the authors present new realizability criteria for list of complex numbers, extending the criteria usually called Soto1 and Soto2. These criteria are sufficient conditions for the real nonnegative inverse eigenvalue problem. On the other hand, a diagonalizable version of a perturbation result by R. Rado is also proved (see [H. Perfect, Duke Math. J. 22, 305–311 (1955; Zbl 0068.32704)]). It is useful for constructing diagonalizable nonnegative matrices, with prescribed spectrum, and for deciding about the universal realizability of spectra.
Finally, the authors establish an universal realizability criterion for a list of complex numbers \(\Lambda=\{\lambda_1, \lambda_2, \ldots, \lambda_n\}\).

MSC:

15A29 Inverse problems in linear algebra
15A18 Eigenvalues, singular values, and eigenvectors
15A20 Diagonalization, Jordan forms

Citations:

Zbl 0068.32704
Full Text: DOI

References:

[1] Alfaro, J. H.; Pastén, G.; Soto, R. L., On nonnegative matrices with prescribed eigenvalues and diagonal entries, Linear Algebra Appl., 556, 400-420 (2018) · Zbl 1437.15023
[2] Borobia, A.; Moro, J.; Soto, R. L., Negativity compensation in the nonnegative inverse eigenvalue problem, Linear Algebra Appl., 393, 73-89 (2004) · Zbl 1079.15503
[3] Brauer, A., Limits for the characteristic roots of a matrix IV. Applications to stochastic matrices, Duke Math. J., 19, 75-91 (1952) · Zbl 0046.01202
[4] Collao, M.; Johnson, C. R.; Soto, R. L., Universal realizability of spectra with two positive eigenvalues, Linear Algebra Appl., 545, 226-239 (2018) · Zbl 1391.15037
[5] Fiedler, M., Eigenvalues of nonnegative symmetric matrices, Linear Algebra Appl., 9, 119-142 (1974) · Zbl 0322.15015
[6] Johnson, C. R., Row stochastic matrices similar to doubly stochastic matrices, Linear Multilinear Algebra, 10, 113-130 (1981) · Zbl 0455.15019
[7] Johnson, C. R.; Julio, A. I.; Soto, R. L., Nonnegative realizability with Jordan structure, Linear Algebra Appl., 587, 302-313 (2020) · Zbl 1475.15012
[8] Julio, A. I.; Manzaneda, C. B.; Soto, R. L., Normal nonnegative realization of spectra, Linear Multilinear Algebra, 63, 1204-1215 (2015) · Zbl 1312.15019
[9] Julio, A. I.; Soto, R. L., Persymmetric and bisymmetric nonnegative inverse eigenvalue problem, Linear Algebra Appl., 469, 130-152 (2015) · Zbl 1310.15017
[10] Karpelevic, F., On the eigenvalues of a matrix with nonnegative elements, Izv. Akad. Nauk SSSR, Ser. Mat., 15, 361-383 (1951) · Zbl 0043.01603
[11] Kolmogorov, A. N., Markov chains with a countable number of possible states, Bull. Moskov. Gos. Univ. Mat. Mekh., 1, 3, 1-16 (1937)
[12] Laffey, T. J.; Meehan, M. E., A characterization of trace zero nonnegative \(5 \times 5\) matrices, Linear Algebra Appl., 302/303, 295-302 (1999) · Zbl 0946.15008
[13] Laffey, T. J.; Šmigoc, H., Nonnegative realization of spectra having negative real parts, Linear Algebra Appl., 416, 148-159 (2006) · Zbl 1103.15005
[14] Loewy, R.; London, D., A note on an inverse problem for nonnegative matrices, Linear Multilinear Algebra, 6, 83-90 (1978) · Zbl 0376.15006
[15] Meehan, M. E., Some results on matrix spectra (1998), National University of Ireland: National University of Ireland Dublin, Ph.D. Thesis
[16] Minc, H., Inverse elementary divisor problem for nonnegative matrices, Proc. Am. Math. Soc., 83, 4, 665-669 (1981) · Zbl 0472.15006
[17] Minc, H., Inverse elementary divisor problem for doubly stochastic matrices, Linear Multilinear Algebra, 11, 121-131 (1982) · Zbl 0482.15012
[18] Perfect, H., Methods of constructing certain stochastic matrices, Duke Math. J., 20, 395-404 (1953) · Zbl 0051.35701
[19] Perfect, H., Methods of constructing certain stochastic matrices II, Duke Math. J., 22, 305-311 (1955) · Zbl 0068.32704
[20] Soto, R. L., Existence and construction of nonnegative matrices with prescribed spectrum, Linear Algebra Appl., 369, 169-184 (2003) · Zbl 1031.15018
[21] Soto, R. L., Realizability criterion for the symmetric nonnegative inverse eigenvalue problem, Linear Algebra Appl., 416, 783-794 (2006) · Zbl 1097.15013
[22] Soto, R. L.; Rojo, O., Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem, Linear Algebra Appl., 416, 844-856 (2006) · Zbl 1097.15014
[23] Soto, R. L.; Rojo, O.; Moro, J.; Borobia, A., Symmetric nonnegative realization of spectra, Electron. J. Linear Algebra, 16, 1-18 (2007) · Zbl 1155.15010
[24] Spector, O., A characterization of trace zero symmetric \(5 \times 5\) matrices, Linear Algebra Appl., 434, 1000-1017 (2011) · Zbl 1209.15037
[25] Suleimanova, H. R., Stochastic matrices with real characteristic values, Dokl. Akad. Nauk SSSR, 66, 343-345 (1949) · Zbl 0035.20903
[26] Torre-Mayo, J.; Abril-Raymundo, M. R.; Alarcia-Estévez, E.; Marijuán, C.; Pisonero, M., The nonnegative inverse eigenvalue problem from the coefficients of the characteristic polynomial. EBL digraphs, Linear Algebra Appl., 426, 729-773 (2007) · Zbl 1136.15007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.