×

A koebe distortion theorem for quasiconformal mappings in the Heisenberg group. (English) Zbl 1435.30160

Summary: We prove a Koebe distortion theorem for the average derivative of a quasiconformal mapping between domains in the sub-Riemannian Heisenberg group \({\mathbb{H}}^1 \). Several auxiliary properties of quasiconformal mappings between subdomains of \({\mathbb{H}}^1\) are proven, including BMO estimates for the logarithm of the Jacobian. Applications of the Koebe theorem include diameter bounds for images of curves, comparison of integrals of the average derivative and the operator norm of the horizontal differential, as well as the study of quasiconformal densities and metrics in domains in \({\mathbb{H}}^1 \). The theorems are discussed for the sub-Riemannian and the Korányi distances. This extends results due to Astala-Gehring, Astala-Koskela, Koskela and Bonk-Koskela-Rohde.

MSC:

30L10 Quasiconformal mappings in metric spaces
30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations
30F45 Conformal metrics (hyperbolic, Poincaré, distance functions)

References:

[1] Astala, K.; Gehring, Fw, Quasiconformal analogues of theorems of Koebe and Hardy-Littlewood, Mich. Math. J., 32, 1, 99-107 (1985) · Zbl 0574.30027 · doi:10.1307/mmj/1029003136
[2] Astala, K.; Gehring, Fw, Injectivity, the BMO norm and the universal Teichmüller space, J. Anal. Math., 46, 16-57 (1986) · Zbl 0628.30026 · doi:10.1007/BF02796572
[3] Astala, K.; Koskela, P., Quasiconformal mappings and global integrability of the derivative, J. Anal. Math., 57, 203-220 (1991) · Zbl 0772.30022 · doi:10.1007/BF03041070
[4] Astala, K.; Manojlović, V., On Pavlovic’s theorem in space, Potential Anal., 43, 3, 361-370 (2015) · Zbl 1336.30031 · doi:10.1007/s11118-015-9475-4
[5] Austin, A.D.: Logarithmic potentials and quasiconformal flows on the Heisenberg group (2017). arXiv:1701.04163
[6] Balogh, Zm, Hausdorff dimension distribution of quasiconformal mappings on the Heisenberg group, J. Anal. Math., 83, 289-312 (2001) · Zbl 0983.30007 · doi:10.1007/BF02790265
[7] Balogh, Zm; Fässler, K.; Platis, Id, Modulus method and radial stretch map in the Heisenberg group, Ann. Acad. Sci. Fenn. Math., 38, 1, 149-180 (2013) · Zbl 1275.30034 · doi:10.5186/aasfm.2013.3811
[8] Bellaïche, A.; Bellaïche, A.; Risler, Jj, The tangent space in sub-Riemannian geometry, Sub-Riemannian Geometry (1996), Basel: Birkhäuser, Basel · Zbl 0862.53031
[9] Bonk, M.; Koskela, P.; Rohde, S., Conformal metrics on the unit ball in Euclidean space, Proc. Lond. Math. Soc. (3), 77, 3, 635-664 (1998) · Zbl 0916.30017 · doi:10.1112/S0024611598000586
[10] Buckley, S., Koskela, P., Lu, G.: Boman equals John. In: 16th Rolf Nevanlinna Colloquium (Joensuu, 1995), pp. 91-99. de Gruyter, Berlin (1996) · Zbl 0852.00025
[11] Buckley, Sm, Inequalities of John-Nirenberg type in doubling spaces, J. Anal. Math., 79, 215-240 (1999) · Zbl 0990.46019 · doi:10.1007/BF02788242
[12] Capogna, L.; Danielli, D.; Pauls, Sd; Tyson, J., An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem. Progress in Mathematics (2007), Basel: Birkhäuser, Basel · Zbl 1138.53003
[13] Capogna, L.; Tang, P., Uniform domains and quasiconformal mappings on the Heisenberg group, Manuscr. Math., 86, 3, 267-281 (1995) · Zbl 0824.30011 · doi:10.1007/BF02567994
[14] Coifman, R.R., Weiss, G.: Analyse Harmonique Non-commutative Sur Certains Espaces Homogènes. Lecture Notes in Mathematics, vol. 242. Springer, Berlin (1971). Étude de certaines intégrales singulières · Zbl 0224.43006
[15] Dairbekov, Ns, Mappings with bounded distortion on Heisenberg groups, Sibirsk. Mat. Zh., 41, 3, 567-590, ii (2000) · Zbl 1074.30509
[16] Folland, Gb; Stein, Em, Hardy Spaces on Homogeneous Groups, Volume 28 of Mathematical Notes (1982), Princeton: Princeton University Press, Princeton · Zbl 0508.42025
[17] Gehring, Fw, The \(L^p\)-integrability of the partial derivatives of a quasiconformal mapping, Acta Math., 130, 265-277 (1973) · Zbl 0258.30021 · doi:10.1007/BF02392268
[18] Heinonen, J.: Calculus on Carnot groups. Fall school in analysis (Jyväskylä, 1994), pp. 1-32
[19] Heinonen, J., Lectures on Analysis on Metric Spaces. Universitext (2001), New York: Springer, New York · Zbl 0985.46008
[20] Heinonen, J.; Koskela, P., \(A_\infty \)-condition for the Jacobian of a quasiconformal mapping, Proc. Am. Math. Soc., 120, 2, 535-543 (1994) · Zbl 0789.30007
[21] Heinonen, J.; Koskela, P., Definitions of quasiconformality, Invent. Math., 120, 1, 61-79 (1995) · Zbl 0832.30013 · doi:10.1007/BF01241122
[22] Heinonen, J.; Koskela, P., Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181, 1, 1-61 (1998) · Zbl 0915.30018 · doi:10.1007/BF02392747
[23] Heinonen, J.; Koskela, P.; Shanmugalingam, N.; Tyson, Jt, Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math., 85, 87-139 (2001) · Zbl 1013.46023 · doi:10.1007/BF02788076
[24] Heinonen, J.; Koskela, P.; Shanmugalingam, N.; Tyson, Jt, Sobolev Spaces on Metric Measure Spaces, Volume 27 of New Mathematical Monographs (2015), Cambridge: Cambridge University Press, Cambridge · Zbl 1332.46001
[25] Herron, Da, Conformal deformations of uniform Loewner spaces, Math. Proc. Camb. Philos. Soc., 136, 2, 325-360 (2004) · Zbl 1046.30027 · doi:10.1017/S0305004103007199
[26] Herron, Da; Lukyanenko, A.; Tyson, Jt, Quasiconvexity in the Heisenberg group, Geom. Dedicata, 192, 157-170 (2018) · Zbl 1392.53050 · doi:10.1007/s10711-017-0257-6
[27] Kinnunen, J.; Shukla, P., Gehring’s lemma and reverse Hölder classes on metric measure spaces, Comput. Methods Funct. Theory, 14, 2-3, 295-314 (2014) · Zbl 1308.42023 · doi:10.1007/s40315-014-0071-1
[28] Korányi, A.; Reimann, Hm, Foundations for the theory of quasiconformal mappings on the Heisenberg group, Adv. Math., 111, 1, 1-87 (1995) · Zbl 0876.30019 · doi:10.1006/aima.1995.1017
[29] Koskela, P., An inverse Sobolev lemma, Rev. Mat. Iberoam., 10, 1, 123-141 (1994) · Zbl 0795.30020 · doi:10.4171/RMI/147
[30] Le Donne, E.; Rigot, S., Besicovitch covering property for homogeneous distances in the Heisenberg groups, J. Eur. Math. Soc. (JEMS), 6, 1589-1617 (2016) · Zbl 1373.28012
[31] Len Ruth Jr., H.: Conformal Densities and Deformations of Uniform Loewner Metric Spaces. Ph.D. Thesis, University of Cincinnati (2008)
[32] Maasalo, Oe, Global integrability of \(p\)-superharmonic functions on metric spaces, J. Anal. Math., 106, 191-207 (2008) · Zbl 1171.31002 · doi:10.1007/s11854-008-0047-z
[33] Martio, O.; Ryazanov, V.; Srebro, U.; Yakubov, E., Moduli in Modern Mapping Theory. Springer Monographs in Mathematics (2008), New York: Springer, New York
[34] Pansu, P., Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. Math., 129, 1, 1-60 (1989) · Zbl 0678.53042 · doi:10.2307/1971484
[35] Pommerenke, C.; Jensen, G., Univalent Functions. Studia Mathematica (1975), Göttingen: Vandenhoeck und Ruprecht, Göttingen · Zbl 0298.30014
[36] Reimann, Hm, Functions of bounded mean oscillation and quasiconformal mappings, Comment. Math. Helv., 49, 260-276 (1974) · Zbl 0289.30027 · doi:10.1007/BF02566734
[37] Reimann, Hm; Rychener, T., Funktionen beschränkter mittlerer Oszillation. Lecture Notes in Mathematics (1975), Berlin: Springer, Berlin · Zbl 0324.46030
[38] Soultanis, E.; Williams, M., Distortion of quasiconformal maps in terms of the quasihyperbolic metric, J. Math. Anal. Appl., 402, 2, 626-634 (2013) · Zbl 1285.30011 · doi:10.1016/j.jmaa.2013.01.061
[39] Staples, Sg, \(L^p\)-averaging domains in homogeneous spaces, J. Math. Anal. Appl., 317, 2, 550-564 (2006) · Zbl 1089.43007 · doi:10.1016/j.jmaa.2005.05.072
[40] Tolsa, X., Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón-Zygmund Theory, Volume 307 of Progress in Mathematics (2014), Cham: Birkhäuser, Cham · Zbl 1290.42002
[41] Tyson, Jt, Metric and geometric quasiconformality in Ahlfors regular Loewner spaces, Conform. Geom. Dyn., 5, 21-73 (2001) · Zbl 0981.30015 · doi:10.1090/S1088-4173-01-00064-9
[42] Väisälä, J., Lectures on \(n\)-Dimensional Quasiconformal Mappings. Lecture Notes in Mathematics (1971), Berlin: Springer, Berlin · Zbl 0221.30031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.