×

Distortion of quasiconformal maps in terms of the quasihyperbolic metric. (English) Zbl 1285.30011

F. W. Gehring and B. G. Osgood [J. Anal. Math. 36, 50–74 (1979; Zbl 0449.30012)] proved that a \(K\)-quasiconformal map \(f\) between domains \(D\) and \(D'\) in \(\mathbb{R}^n\) satisfies a distortion inequality \[ \frac{d'(f(x),f(y))}{d'(f(x),\partial D')} \leq a_n \left(\frac{d(x,y)}{d(x, \partial D)}\right)^{\alpha} \] for all \(x \in D\) all \(y \in B(x, a_n^{-1/\alpha}d(x,\partial D)\) where \(d\) and \(d'\) are the quasihyperbolic metrics in \(D\) and \(D'\), respectively, \(a_n \in (0,1)\) depends only on \(n\) and \(\alpha = K^{1/(1-n)}\). The authors generalize this to metric measure spaces with \(Q\)-bounded geometries, which means that the Borel measures in these spaces satisfy \(r^{Q}/C_o \leq \mu(B(x,r)) \leq C_o r^{Q}\) and the \(Q\)-modulus of the path family joining to non-degenerate continua has a lower bound similar to the \(n\)-modulus in \(\mathbb{R}^n\) joining two such sets, see [J. Heinonen and P. Koskela, Acta Math. 181, No. 1, 1–61 (1998; Zbl 0915.30018)]. For a quasiconformal map \(f\) between proper domains \(D\) and \(D'\) in the metric spaces \(X\) and \(Y\) with \(Q\)-bounded geometries the distortion inequality takes the form \(d'(f(x),f(y)) \leq c \max((d(x,y)^{\alpha}, (d(x,y))\) for every \(x\) and \(y\) in \(D\) where \(c\) and \(\alpha\) depend on data. The proof makes use of the quasisymmetry property of a quasiconformal map between metric spaces with bounded geometries.

MSC:

30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations

References:

[1] Anderson, G. D.; Vamanamurthy, M. K.; Vuorinen, M., Sharp distortion theorems for quasiconformal mappings, Trans. Amer. Math. Soc., 305, 1, 95-111 (1988) · Zbl 0639.30019
[2] Balogh, Zoltán M.; Buckley, Stephen M., Sphericalization and flattening, Conform. Geom. Dyn., 9, 76-101 (2005), (electronic) · Zbl 1108.30033
[3] Bonk, Mario; Heinonen, Juha; Koskela, Pekka, Uniformizing Gromov hyperbolic spaces, Astérisque, 270, viii+99 (2001) · Zbl 0970.30010
[4] Buckley, Stephen M.; Herron, David A.; Xie, Xiangdong, Metric space inversions, quasihyperbolic distance, and uniform spaces, Indiana Univ. Math. J., 57, 2, 837-890 (2008) · Zbl 1160.30006
[5] Gehring, F. W.; Osgood, B. G., Uniform domains and the quasihyperbolic metric, J. Anal. Math., 36, 1, 50-74 (1979) · Zbl 0449.30012
[6] Heinonen, Juha, (Lectures on Analysis on Metric Spaces. Lectures on Analysis on Metric Spaces, Universitext (2001), Springer-Verlag: Springer-Verlag New York) · Zbl 0985.46008
[7] Heinonen, Juha; Koskela, Pekka, Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181, 1, 1-61 (1998) · Zbl 0915.30018
[8] Heinonen, Juha; Koskela, Pekka; Shanmugalingam, Nageswari; Tyson, Jeremy T., Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math., 85, 87-139 (2001) · Zbl 1013.46023
[9] Herron, David A., Quasiconformal deformations and volume growth, Proc. Lond. Math. Soc. (3), 92, 1, 161-199 (2006) · Zbl 1088.30012
[10] Herron, David; Shanmugalingam, Nageswari; Xie, Xiangdong, Uniformity from Gromov hyperbolicity, Illinois J. Math., 52, 4, 1065-1109 (2008) · Zbl 1189.30055
[11] Väisälä, Jussi, (Lectures on \(n\)-dimensional Quasiconformal Mappings. Lectures on \(n\)-dimensional Quasiconformal Mappings, Lecture Notes in Mathematics, vol. 229 (1971), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0221.30031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.