×

Quasiconvexity in the Heisenberg group. (English) Zbl 1392.53050

A metric space \((X, d)\) is \(c\)-quasiconvex, \(c \geq 1\), if every pair of points \(x\), \(y\) in \(X\) can be joined by a rectifiable curve whose length is not more than \(c d(x, y)\). Let \(H = \mathbb R^3\) with coordinates \((x, y, t)\) be the Heisenberg group with Carnot-Carathéodory path metric (see, e.g., [R. Montgomery, A tour of subriemannian geometries, their geodesics and applications. Providence, RI: American Mathematical Society (AMS) (2002; Zbl 1044.53022)]. The main result of the paper is that, if \(A\) is a closed subset of the Heisenberg group whose vertical projections into the \(xt\)- and \(yt\)-planes are nowhere dense, then the complement of \(A\) is quasiconvex.
As a corollary the authors prove that, if \(A \subset H\) is a closed set of cc-Hausdorff 3-measure zero, then \(H \setminus A\) is quasiconvex. In particular, sets of cc-Hausdorff dimension strictly less that \(3\) have quasiconvex complements, and another result of the paper shows that this is sharp: there exists a compact and totally disconnected set \(A \subset H\) of cc-Hausdorff dimension \(3\) whose complement is not quasiconvex.

MSC:

53C17 Sub-Riemannian geometry

Citations:

Zbl 1044.53022

References:

[1] Balogh, Z.M., Durand-Cartagena, E., Fässler, K., Mattila, P., Tyson, J.T.: The effect of projections on dimension in the Heisenberg group. Rev. Mat. Iberoam. 29(2), 381-432 (2013) · Zbl 1279.28007 · doi:10.4171/RMI/725
[2] Balogh, Z.M., Rickly, M., Serra Cassano, F.: Comparison of Hausdorff measures with respect to the Euclidean and the Heisenberg metric. Publ. Mat. 47(1), 237-259 (2003) · Zbl 1060.28002 · doi:10.5565/PUBLMAT_47103_11
[3] Balogh, Z.M., Tyson, J.T., Warhurst, B.: Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry on Carnot groups. Adv. Math. 220(2), 560-619 (2009) · Zbl 1155.22011 · doi:10.1016/j.aim.2008.09.018
[4] Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9(3), 428-517 (1999) · Zbl 0942.58018 · doi:10.1007/s000390050094
[5] Chousionis, V., Fässler, K., Orponen, T.: Intrinsic Lipschitz groups and vertical \[\beta\] β-numbers in the Heisenberg group. Preprint (2016) · Zbl 1426.43003
[6] Danielli, D., Garofalo, N., Nhieu, D.-M.: Notions of convexity in Carnot groups. Commun. Anal. Geom. 11(2), 263-341 (2003) · Zbl 1077.22007 · doi:10.4310/CAG.2003.v11.n2.a5
[7] Fässler, K., Lukyanenko, A., Tyson, J.T.: Heisenberg quasiregular ellipticity. arXiv:1609.07749 · Zbl 1419.30010
[8] Franchi, B., Serapioni, R.P.: Intrinsic Lipschitz graphs within Carnot groups. J. Geom. Anal. 26(3), 1946-1994 (2016) · Zbl 1352.22008 · doi:10.1007/s12220-015-9615-5
[9] Hakobyan, H., Herron, D.A.: Euclidean quasiconvexity. Ann. Acad. Sci. Fenn. Math. 33(1), 205-230 (2008) · Zbl 1155.30012
[10] Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181(1), 1-61 (1998) · Zbl 0915.30018 · doi:10.1007/BF02392747
[11] Lu, G., Manfredi, J.J., Stroffolini, B.: Convex functions on the Heisenberg group. Calc. Var. Partial Differ. Equ. 19(1), 1-22 (2004) · Zbl 1072.49019 · doi:10.1007/s00526-003-0190-4
[12] Monti, R., Morbidelli, D.: Regular domains in homogeneous groups. Trans. Am. Math. Soc. 357(8), 2975-3011 (2005) · Zbl 1067.43003 · doi:10.1090/S0002-9947-05-03799-2
[13] Monti, R., Rickly, M.: Geodetically convex sets in the Heisenberg group. J. Convex Anal. 12(1), 187-196 (2005) · Zbl 1077.53030
[14] Tang, P.: Regularity and extremality of quasiconformal homeomorphisms on CR \[33\]-manifolds. Ann. Acad. Sci. Fenn. Math. 21(2), 289-308 (1996) · Zbl 0880.32010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.