×

Representation-free description of light-pulse atom interferometry including non-inertial effects. (English) Zbl 1357.81174

Summary: Light-pulse atom interferometers rely on the wave nature of matter and its manipulation with coherent laser pulses. They are used for precise gravimetry and inertial sensing as well as for accurate measurements of fundamental constants. Reaching higher precision requires longer interferometer times which are naturally encountered in microgravity environments such as drop-tower facilities, sounding rockets and dedicated satellite missions aiming at fundamental quantum physics in space. In all those cases, it is necessary to consider arbitrary trajectories and varying orientations of the interferometer set-up in non-inertial frames of reference.
Here we provide a versatile representation-free description of atom interferometry entirely based on operator algebra to address this general situation. We show how to analytically determine the phase shift as well as the visibility of interferometers with an arbitrary number of pulses including the effects of local gravitational accelerations, gravity gradients, the rotation of the lasers and non-inertial frames of reference. Our method conveniently unifies previous results and facilitates the investigation of novel interferometer geometries.

MSC:

81V80 Quantum optics
78A60 Lasers, masers, optical bistability, nonlinear optics

References:

[1] Michelson, A. A., The relative motion of the Earth and the luminiferous ether, Am. J. Sci., 34, 333 (1887)
[2] Perot, A.; Fabry, C., Mémoires et observations. Sur l’application de phénomènes d’interférence à la solution de divers problèmes de spectroscopie et de métrologie, Bull. Astron. Serie I, 16, 5-32 (1899)
[3] Möllenstedt, G.; Keller, M., Elektroneninterferometrische Messung des inneren Potentials, Z. Phys., 148, 34-37 (1957)
[4] Lichte, H.; Möllenstedt, G.; Wahl, H., A Michelson interferometer using electron waves, Z. Phys., 249, 456-461 (1972)
[5] Rauch, H.; Treimer, W.; Bonse, U., Test of a single crystal neutron interferometer, Phys. Lett. A, 47, 369-371 (1974)
[6] Colella, R.; Overhauser, A. W.; Werner, S. A., Observation of gravitationally induced quantum interference, Phys. Rev. Lett., 34, 1472-1474 (1975)
[7] Rabi, I. I.; Zacharias, J. R.; Millman, S.; Kusch, P., A new method of measuring nuclear magnetic moment, Phys. Rev., 53, 318 (1938)
[8] Ramsey, N. F., A new molecular beam resonance method, Phys. Rev., 76 (1949), 996-996
[9] Clauser, J. F., Ultra-high sensitivity accelerometers and gyroscopes using neutral atom matter-wave interferometry, Physica B, 151, 262-272 (1988)
[10] Bordé, C. J., Atomic interferometry with internal state labelling, Phys. Lett. A, 140, 10-12 (1989)
[11] Kasevich, M. A.; Chu, S., Atomic interferometry using stimulated Raman transitions, Phys. Rev. Lett., 67, 181-184 (1991)
[12] Cronin, A. D.; Schmiedmayer, J.; Pritchard, D. E., Optics and interferometry with atoms and molecules, Rev. Modern Phys., 81, 1051-1129 (2009)
[13] Berman, P. R., Atom interferometry (1997), Academic press
[14] Jönsson, C., Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten, Zeitschrift für Physik, 161, 454-474 (1961)
[15] Jönsson, C., Electron diffraction at multiple slits, Am. J. Phys, 42, 4-11 (1974)
[16] Greenberger, D. M., The neutron interferometer as a device for illustrating the strange behavior of quantum systems, Rev. Modern Phys., 55, 875-905 (1983)
[17] Werner, S. A.; Staudenmann, J. L.; Colella, R., Effect of Earth’s rotation on the quantum mechanical phase of the neutron, Phys. Rev. Lett., 42, 1103-1106 (1979)
[18] Carnal, O.; Mlynek, J., Young’s double-slit experiment with atoms: A simple atom interferometer, Phys. Rev. Lett., 66, 2689-2692 (1991)
[19] Keith, D. W.; Ekstrom, C. R.; Turchette, Q. A.; Pritchard, D. E., An interferometer for atoms, Phys. Rev. Lett., 66, 2693-2696 (1991)
[20] Gould, P. L.; Ruff, G. A.; Pritchard, D. E., Diffraction of atoms by light: The near-resonant Kapitza-Dirac effect, Phys. Rev. Lett., 56, 827-830 (1986)
[21] Rasel, E. M.; Oberthaler, M. K.; Batelaan, H.; Schmiedmayer, J.; Zeilinger, A., Atom wave interferometry with diffraction gratings of light, Phys. Rev. Lett., 75, 2633-2637 (1995)
[22] Martin, P. J.; Oldaker, B. G.; Miklich, A. H.; Pritchard, D. E., Bragg scattering of atoms from a standing light wave, Phys. Rev. Lett., 60, 515-518 (1988)
[23] Giltner, D. M.; McGowan, R. W.; Lee, S. A., Atom interferometer based on Bragg scattering from standing light waves, Phys. Rev. Lett., 75, 2638-2641 (1995)
[24] Ramsey, N. F., A molecular beam resonance method with separated oscillating fields, Phys. Rev., 78, 695-699 (1950)
[25] Keupp, J.; Douillet, A.; Mehlstäubler, T. E.; Rehbein, N.; Rasel, E. M.; Ertmer, W., A high-resolution Ramsey-Bordé spectrometer for optical clocks based on cold Mg atoms, The European Physical Journal D - Atomic, Molecular, Opt. Plasma Phys., 36, 289-294 (2005)
[26] Poli, N.; Oates, C. W.; Gill, P.; Tino, G. M., Optical atomic clocks, Riv. Nuovo Cimento, 36, 555-624 (2013)
[27] Riehle, F.; Kisters, T.; Witte, A.; Helmcke, J.; Bordé, C. J., Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer, Phys. Rev. Lett., 67, 177-180 (1991)
[28] Kasevich, M. A.; Riis, E.; Chu, S.; DeVoe, R. G., rf spectroscopy in an atomic fountain, Phys. Rev. Lett., 63, 612-615 (1989)
[29] Sullivan, D.; Bergquist, J.; Bollinger, J.; Drullinger, R.; Itano, W.; Jefferts, S.; Lee, W.; Meekhof, D.; Parker, T.; Walls, F., Primary atomic frequency standards at NIST, J. Res. Natl. Inst. Stand. Technol., 106, 47-64 (2001)
[30] Canuel, B.; Leduc, F.; Holleville, D.; Gauguet, A.; Fils, J.; Virdis, A.; Clairon, A.; Dimarcq, N.; Bordé, C. J.; Landragin, A.; Bouyer, P., Six-axis inertial sensor using cold-atom interferometry, Phys. Rev. Lett., 97, Article 010402 pp. (2006)
[31] Gauguet, A.; Canuel, B.; Lévèque, T.; Chaibi, W.; Landragin, A., Characterization and limits of a cold-atom Sagnac interferometer, Phys. Rev. A, 80, Article 063604 pp. (2009)
[32] Stockton, J. K.; Takase, K.; Kasevich, M. A., Absolute geodetic rotation measurement using atom interferometry, Phys. Rev. Lett., 107, Article 133001 pp. (2011)
[33] Berg, P.; Abend, S.; Tackmann, G.; Schubert, C.; Giese, E.; Schleich, W. P.; Narducci, F. A.; Ertmer, W.; Rasel, E. M., Composite-light-pulse technique for high-precision atom interferometry, Phys. Rev. Lett., 114, Article 063002 pp. (2015)
[34] Haslinger, P.; Dörre, N.; Geyer, P.; Rodewald, J.; Nimmrichter, S.; Arndt, M., A universal matter-wave interferometer with optical ionization gratings in the time domain, Nat. Phys., 9, 144-148 (2013)
[35] Bateman, J.; Nimmrichter, S.; Hornberger, K.; Ulbricht, H., Near-field interferometry of a free-falling nanoparticle from a point-like source, Nature Commun., 5 (2014)
[36] Hornberger, K.; Gerlich, S.; Haslinger, P.; Nimmrichter, S.; Arndt, M., Colloquium: Quantum interference of clusters and molecules, Rev. Modern Phys., 84, 157-173 (2012)
[37] Kaltenbaek, R.; Hechenblaikner, G.; Kiesel, N.; Romero-Isart, O.; Schwab, K. C.; Johann, U.; Aspelmeyer, M., Macroscopic quantum resonators (MAQRO), Exp. Astron., 34, 123-164 (2012)
[39] Nimmrichter, S.; Hornberger, K., Macroscopicity of mechanical quantum superposition states, Phys. Rev. Lett., 110, Article 160403 pp. (2013)
[40] Moler, K.; Weiss, D. S.; Kasevich, M. A.; Chu, S., Theoretical analysis of velocity-selective Raman transitions, Phys. Rev. A, 45, 342-348 (1992)
[41] Kozuma, M.; Deng, L.; W. Hagley, E.; Wen, J.; Lutwak, R.; Helmerson, K.; Rolston, S. L.; Phillips, W. D., Coherent splitting of Bose-Einstein condensed atoms with optically induced Bragg diffraction, Phys. Rev. Lett., 82, 871-875 (1999)
[42] Torii, Y.; Suzuki, Y.; Kozuma, M.; Sugiura, T.; Kuga, T.; Deng, L.; W. Hagley, E., Mach-Zehnder Bragg interferometer for a Bose-Einstein condensate, Phys. Rev. A, 61, Article 041602 pp. (2000)
[43] Debs, J. E.; Altin, P. A.; Barter, T. H.; Döring, D.; Dennis, G. R.; McDonald, G.; Anderson, R. P.; Close, J. D.; Robins, N. P., Cold-atom gravimetry with a Bose-Einstein condensate, Phys. Rev. A, 84, Article 033610 pp. (2011)
[44] Altin, P. A.; Johnsson, M. T.; Negnevitsky, V.; Dennis, G. R.; Anderson, R. P.; Debs, J. E.; Szigeti, S. S.; Hardman, K. S.; Bennetts, S.; McDonald, G. D.; Turner, L. D.; Close, J. D.; Robins, N. P., Precision atomic gravimeter based on Bragg diffraction, New J. Phys., 15, Article 023009 pp. (2013)
[45] Müntinga, H.; Ahlers, H.; Krutzik, M.; Wenzlawski, A.; Arnold, S.; Becker, D.; Bongs, K.; Dittus, H.; Duncker, H.; Gaaloul, N.; Gherasim, C.; Giese, E.; Grzeschik, C.; Hänsch, T. W.; Hellmig, O.; Herr, W.; Herrmann, S.; Kajari, E.; Kleinert, S.; Lämmerzahl, C.; Lewoczko-Adamczyk, W.; Malcolm, J.; Meyer, N.; Nolte, R.; Peters, A.; Popp, M.; Reichel, J.; Roura, A.; Rudolph, J.; Schiemangk, M.; Schneider, M.; Seidel, S. T.; Sengstock, K.; Tamma, V.; Valenzuela, T.; Vogel, A.; Walser, R.; Wendrich, T.; Windpassinger, P.; Zeller, W.; van Zoest, T.; Ertmer, W.; Schleich, W. P.; Rasel, E. M., Interferometry with Bose-Einstein condensates in microgravity, Phys. Rev. Lett., 110, Article 093602 pp. (2013)
[46] McGuirk, J. M.; Snadden, M. J.; Kasevich, M. A., Large area light-pulse atom interferometry, Phys. Rev. Lett., 85, 4498-4501 (2000)
[47] Lévèque, T.; Gauguet, A.; Michaud, F.; Pereira Dos Santos, F.; Landragin, A., Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique, Phys. Rev. Lett., 103, Article 080405 pp. (2009)
[48] Müller, H.; Chiow, S.-W.; Long, Q.; Herrmann, S.; Chu, S., Atom interferometry with up to 24-photon-momentum-transfer beam splitters, Phys. Rev. Lett., 100, Article 180405 pp. (2008)
[49] Chiow, S.-W.; Herrmann, S.; Chu, S.; Müller, H., Noise-immune conjugate large-area atom interferometers, Phys. Rev. Lett., 103, Article 050402 pp. (2009)
[50] Chiow, S.-W.; Kovachy, T.; Chien, H.-C.; Kasevich, M. A., \(102ħ k\) large area atom interferometers, Phys. Rev. Lett., 107, Article 130403 pp. (2011)
[51] Cladé, P.; Guellati-Khélifa, S.; Nez, F.; Biraben, F., Large momentum beam splitter using Bloch oscillations, Phys. Rev. Lett., 102, Article 240402 pp. (2009)
[52] Müller, H.; Chiow, S.-W.; Herrmann, S.; Chu, S., Atom interferometers with scalable enclosed area, Phys. Rev. Lett., 102, Article 240403 pp. (2009)
[53] Kovachy, T.; Hogan, J. M.; M. S. Johnson, D.; Kasevich, M. A., Optical lattices as waveguides and beam splitters for atom interferometry: An analytical treatment and proposal of applications, Phys. Rev. A, 82, Article 013638 pp. (2010)
[54] McDonald, G. D.; C. N. Kuhn, C.; Bennetts, S.; Debs, J. E.; Hardman, K. S.; Johnsson, M.; Close, J. D.; Robins, N. P., \(80 ħ k\) momentum separation with Bloch oscillations in an optically guided atom interferometer, Phys. Rev. A, 88, Article 053620 pp. (2013)
[55] McDonald, G. D.; C. N. Kuhn, C.; Bennetts, S.; Debs, J. E.; Hardman, K. S.; Close, J. D.; Robins, N. P., A faster scaling in acceleration-sensitive atom interferometers, EPL (Europhysics Letters), 105, 63001 (2014)
[56] Cadoret, M.; de Mirandes, E.; Cladé, P.; Guellati-Khélifa, S.; Schwob, C.; Nez, F.; Julien, L.; Biraben, F., Combination of Bloch oscillations with a Ramsey-Bordé interferometer: New determination of the fine structure constant, Phys. Rev. Lett., 101, Article 230801 pp. (2008)
[57] Bouchendira, R.; Cladé, P.; Guellati-Khélifa, S.; Nez, F.; Biraben, F., New determination of the fine structure constant and test of the quantum electrodynamics, Phys. Rev. Lett., 106, Article 080801 pp. (2011)
[58] Peters, A.; Chung, K. Y.; Chu, S., High-precision gravity measurements using atom interferometry, Metrologia, 38, 25 (2001)
[59] Giese, E.; Roura, A.; Tackmann, G.; Rasel, E. M.; Schleich, W. P., Double Bragg diffraction: A tool for atom optics, Phys. Rev. A, 88, Article 053608 pp. (2013)
[60] Küber, J., Dynamics of Bose-Einstein condensates in novel optical potentials (2014), TU Darmstadt, (Ph.D. thesis)
[62] Malossi, N.; Bodart, Q.; Merlet, S.; Lévèque, T.; Landragin, A.; Pereira Dos Santos, F., Double diffraction in an atomic gravimeter, Phys. Rev. A, 81, Article 013617 pp. (2010)
[63] Zhou, L.; Long, S.; Tang, B.; Chen, X.; Gao, F.; Peng, W.; Duan, W.; Zhong, J.; Xiong, Z.; Wang, J.; Zhang, Y.; Zhan, M., Test of equivalence principle at \(1 0^{- 8}\) level by a dual-species double-diffraction Raman atom interferometer, Phys. Rev. Lett., 115, Article 013004 pp. (2015)
[64] Graham, P. W.; Hogan, J. M.; Kasevich, M. A.; Rajendran, S., New method for gravitational wave detection with atomic sensors, Phys. Rev. Lett., 110, Article 171102 pp. (2013)
[66] Peters, A.; Chung, K. Y.; Chu, S., Measurement of gravitational acceleration by dropping atoms, Nature, 400, 849-852 (1999)
[67] Merlet, S.; Bodart, Q.; Malossi, N.; Landragin, A.; Pereira Dos Santos, F.; Gitlein, O.; Timmen, L., Comparison between two mobile absolute gravimeters: Optical versus atomic interferometers, Metrologia, 47, L9 (2010)
[68] Farah, T.; Guerlin, C.; Landragin, A.; Bouyer, P.; Gaffet, S.; Pereira Dos Santos, F.; Merlet, S., Underground operation at best sensitivity of the mobile LNE-SYRTE cold atom gravimeter, Gyroscopy and Navigation, 5, 266-274 (2014)
[69] Hu, Z.-K.; Sun, B.-L.; Duan, X.-C.; Zhou, M.-K.; Chen, L.-L.; Zhan, S.; Zhang, Q.-Z.; Luo, J., Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter, Phys. Rev. A, 88, Article 043610 pp. (2013)
[70] Hauth, M.; Freier, C.; Schkolnik, V.; Senger, A.; Schmidt, M.; Peters, A., First gravity measurements using the mobile atom interferometer GAIN, Appl. Phys. B, 113, 49-55 (2013)
[71] Bidel, Y.; Carraz, O.; Charrière, R.; Cadoret, M.; Zahzam, N.; Bresson, A., Compact cold atom gravimeter for field applications, Appl. Phys. Lett., 102 (2013)
[72] Snadden, M. J.; McGuirk, J. M.; Bouyer, P.; Haritos, K. G.; Kasevich, M. A., Measurement of the Earth’s gravity gradient with an atom interferometer-based gravity gradiometer, Phys. Rev. Lett., 81, 971-974 (1998)
[73] McGuirk, J. M.; Foster, G. T.; Fixler, J. B.; Snadden, M. J.; Kasevich, M. A., Sensitive absolute-gravity gradiometry using atom interferometry, Phys. Rev. A, 65, Article 033608 pp. (2002)
[74] Sorrentino, F.; Bodart, Q.; Cacciapuoti, L.; Lien, Y.-H.; Prevedelli, M.; Rosi, G.; Salvi, L.; Tino, G. M., Sensitivity limits of a Raman atom interferometer as a gravity gradiometer, Phys. Rev. A, 89, Article 023607 pp. (2014)
[75] Biedermann, G. W.; Wu, X.; Deslauriers, L.; Roy, S.; Mahadeswaraswamy, C.; Kasevich, M. A., Testing gravity with cold-atom interferometers, Phys. Rev. A, 91, Article 033629 pp. (2015)
[76] Carraz, O.; Siemes, C.; Massotti, L.; Haagmans, R.; Silvestrin, P., A spaceborne gravity gradiometer concept based on cold atom interferometers for measuring Earth’s gravity field, Microgravity Sci. Technol., 26, 139-145 (2014)
[77] Canuel, B.; Amand, L.; Bertoldi, A.; Chaibi, W.; Geiger, R.; Gillot, J.; Landragin, A.; Merzougui, M.; Riou, I.; Schmid, S. P.; Bouyer, P., The matter-wave laser interferometer gravitation antenna (MIGA): New perspectives for fundamental physics and geosciences, E3S Web Conf., 4, 01004 (2014)
[79] Rosi, G.; Cacciapuoti, L.; Sorrentino, F.; Menchetti, M.; Prevedelli, M.; Tino, G. M., Measurement of the gravity-field curvature by atom interferometry, Phys. Rev. Lett., 114, Article 013001 pp. (2015)
[80] Lenef, A.; Hammond, T. D.; Smith, E. T.; Chapman, M. S.; Rubenstein, R. A.; Pritchard, D. E., Rotation sensing with an atom interferometer, Phys. Rev. Lett., 78, 760-763 (1997)
[81] Gustavson, T. L.; Bouyer, P.; Kasevich, M. A., Precision rotation measurements with an atom interferometer gyroscope, Phys. Rev. Lett., 78, 2046-2049 (1997)
[82] Gustavson, T. L.; Landragin, A.; Kasevich, M. A., Rotation sensing with a dual atom-interferometer Sagnac gyroscope, Class. Quantum Gravity, 17, 2385 (2000) · Zbl 0967.83508
[83] Durfee, D. S.; Shaham, Y. K.; Kasevich, M. A., Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope, Phys. Rev. Lett., 97, Article 240801 pp. (2006)
[84] Barrett, B.; Geiger, R.; Dutta, I.; Meunier, M.; Canuel, B.; Gauguet, A.; Bouyer, P.; Landragin, A., The Sagnac effect: 20 years of development in matter-wave interferometry, C. R. Phys., 15, 875-883 (2014), The Sagnac effect: 100 years later / L’effet Sagnac : 100 ans après
[85] Will, C. M., The confrontation between general relativity and experiment, Living Rev. Relativ., 17 (2014) · Zbl 1316.83019
[86] Mattingly, D., Modern tests of Lorentz invariance, Living Rev. Rel, 8, 2003 (2005) · Zbl 1255.83059
[87] Kostelecký, V. A.; Russell, N., Data tables for Lorentz and CPT violation, Rev. Modern Phys., 83, 11-31 (2011)
[88] Wolf, P.; Chapelet, F.; Bize, S.; Clairon, A., Cold atom clock test of Lorentz invariance in the matter sector, Phys. Rev. Lett., 96, Article 060801 pp. (2006)
[89] Müller, H.; Chiow, S.-W.; Herrmann, S.; Chu, S.; Chung, K.-Y., Atom-interferometry tests of the isotropy of post-Newtonian gravity, Phys. Rev. Lett., 100, Article 031101 pp. (2008)
[90] Kostelecký, V. A.; Tasson, J. D., Matter-gravity couplings and Lorentz violation, Phys. Rev. D, 83, Article 016013 pp. (2011)
[91] Damour, T.; Donoghue, J. F., Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D, 82, Article 084033 pp. (2010)
[92] Uzan, J.-P., Varying constants, gravitation and cosmology, Living Rev. Relativ., 14 (2011) · Zbl 1215.83012
[93] Altschul, B.; Bailey, Q. G.; Blanchet, L.; Bongs, K.; Bouyer, P.; Cacciapuoti, L.; Capozziello, S.; Gaaloul, N.; Giulini, D.; Hartwig, J.; Iess, L.; Jetzer, P.; Landragin, A.; Rasel, E.; Reynaud, S.; Schiller, S.; Schubert, C.; Sorrentino, F.; Sterr, U.; Tasson, J. D.; Tino, G. M.; Tuckey, P.; Wolf, P., Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission, Adv. Space Res., 55, 501-524 (2015)
[94] Schlamminger, S.; Choi, K.-Y.; Wagner, T. A.; Gundlach, J. H.; Adelberger, E. G., Test of the equivalence principle using a rotating torsion balance, Phys. Rev. Lett., 100, Article 041101 pp. (2008)
[95] Adelberger, E. G.; Gundlach, J.; Heckel, B.; Hoedl, S.; Schlamminger, S., Torsion balance experiments: A low-energy frontier of particle physics, Prog. Part. Nucl. Phys., 62, 102-134 (2009)
[96] Fray, S.; Diez, C. A.; W. Hänsch, T.; Weitz, M., Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle, Phys. Rev. Lett., 93, Article 240404 pp. (2004)
[97] Bonnin, A.; Zahzam, N.; Bidel, Y.; Bresson, A., Simultaneous dual-species matter-wave accelerometer, Phys. Rev. A, 88, Article 043615 pp. (2013)
[98] Schlippert, D.; Hartwig, J.; Albers, H.; Richardson, L. L.; Schubert, C.; Roura, A.; Schleich, W. P.; Ertmer, W.; Rasel, E. M., Quantum test of the universality of free fall, Phys. Rev. Lett., 112, Article 203002 pp. (2014)
[99] Bonnin, A.; Zahzam, N.; Bidel, Y.; Bresson, A., Characterization of a simultaneous dual-species atom interferometer for a quantum test of the weak equivalence principle, Phys. Rev. A, 92, Article 023626 pp. (2015)
[100] Tarallo, M. G.; Mazzoni, T.; Poli, N.; Sutyrin, D. V.; Zhang, X.; Tino, G. M., Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: Search for spin-gravity coupling effects, Phys. Rev. Lett., 113, Article 023005 pp. (2014)
[101] Hohensee, M. A.; Chu, S.; Peters, A.; Müller, H., Equivalence principle and gravitational redshift, Phys. Rev. Lett., 106, Article 151102 pp. (2011)
[102] Hohensee, M. A.; Müller, H.; Wiringa, R. B., Equivalence principle and bound kinetic energy, Phys. Rev. Lett., 111, Article 151102 pp. (2013)
[103] Hohensee, M. A.; Müller, H., Precision tests of general relativity with matter waves, J. Modern Opt., 58, 2021-2027 (2011)
[104] Aguilera, D. N.; Ahlers, H.; Battelier, B.; Bawamia, A.; Bertoldi, A.; Bondarescu, R.; Bongs, K.; Bouyer, P.; Braxmaier, C.; Cacciapuoti, L.; Chaloner, C.; Chwalla, M.; Ertmer, W.; Franz, M.; Gaaloul, N.; Gehler, M.; Gerardi, D.; Gesa, L.; Gürlebeck, N.; Hartwig, J.; Hauth, M.; Hellmig, O.; Herr, W.; Herrmann, S.; Heske, A.; Hinton, A.; Ireland, P.; Jetzer, P.; Johann, U.; Krutzik, M.; Kubelka, A.; Lämmerzahl, C.; Landragin, A.; Lloro, I.; Massonnet, D.; Mateos, I.; Milke, A.; Nofrarias, M.; Oswald, M.; Peters, A.; Posso-Trujillo, K.; Rasel, E. M.; Rocco, E.; Roura, A.; Rudolph, J.; Schleich, W. P.; Schubert, C.; Schuldt, T.; Seidel, S.; Sengstock, K.; Sopuerta, C. F.; Sorrentino, F.; Summers, D.; Tino, G. M.; Trenkel, C.; Uzunoglu, N.; von Klitzing, W.; Walser, R.; Wendrich, T.; Wenzlawski, A.; Weßels, P.; Wicht, A.; Wille, E.; Williams, M.; Windpassinger, P.; Zahzam, N., STE-QUEST—test of the universality of free fall using cold atom interferometry, Class. Quantum Gravity, 31, Article 115010 pp. (2014) · Zbl 1294.83005
[105] Fixler, J. B.; Foster, G. T.; McGuirk, J. M.; Kasevich, M. A., Atom interferometer measurement of the Newtonian constant of gravity, Science, 315, 74-77 (2007)
[106] Lamporesi, G.; Bertoldi, A.; Cacciapuoti, L.; Prevedelli, M.; Tino, G. M., Determination of the Newtonian gravitational constant using atom interferometry, Phys. Rev. Lett., 100, Article 050801 pp. (2008)
[107] Rosi, G.; Sorrentino, F.; Cacciapuoti, L.; Prevedelli, M.; Tino, G. M., Precision measurement of the Newtonian gravitational constant using cold atoms, Nature, 510, 518-521 (2014)
[108] Weiss, D. S.; Young, B. C.; Chu, S., Precision measurement of the photon recoil of an atom using atomic interferometry, Phys. Rev. Lett., 70, 2706-2709 (1993)
[109] Bouchendira, R.; Cladé, P.; Guellati-Khélifa, S.; Nez, F.; Biraben, F., State of the art in the determination of the fine structure constant: test of quantum electrodynamics and determination of \(h / m_{\text{u}} \), Ann. Phys., 525, 484-492 (2013)
[110] Lan, S.-Y.; Kuan, P.-C.; Estey, B.; English, D.; Brown, J. M.; Hohensee, M. A.; Müller, H., A clock directly linking time to a particle’s mass, Science, 339, 554-557 (2013)
[111] Wicht, A.; Hensley, J. M.; Sarajlic, E.; Chu, S., A preliminary measurement of the fine structure constant based on atom interferometry, Phys. Scr., 2002, 82 (2002)
[112] Jentsch, C.; Müller, T.; Rasel, E. M.; Ertmer, W., HYPER: A satellite mission in fundamental physics based on high precision atom interferometry, Gen. Relativity Gravitation, 36, 10, 2197-2221 (2004) · Zbl 1063.83510
[113] Dimopoulos, S.; Graham, P. W.; Hogan, J. M.; Kasevich, M. A., General relativistic effects in atom interferometry, Phys. Rev. D, 78, Article 042003 pp. (2008)
[114] Chiao, R. Y.; Speliotopoulos, A. D., Towards MIGO, the matter-wave interferometric gravitational-wave observatory, and the intersection of quantum mechanics with general relativity, J. Modern Opt., 51, 861-899 (2004) · Zbl 1064.83509
[115] Roura, A.; Brill, D. R.; Hu, B. L.; Misner, C. W.; Phillips, W. D., Gravitational wave detectors based on matter wave interferometers (MIGO) are no better than laser interferometers (LIGO), Phys. Rev. D, 73, Article 084018 pp. (2006)
[116] Dimopoulos, S.; Graham, P. W.; Hogan, J. M.; Kasevich, M. A.; Rajendran, S., Atomic gravitational wave interferometric sensor, Phys. Rev. D, 78, Article 122002 pp. (2008)
[117] Hogan, J. M.; M. S. Johnson, D.; Dickerson, S.; Kovachy, T.; Sugarbaker, A.; Chiow, S.-W.; Graham, P. W.; Kasevich, M. A.; Saif, B.; Rajendran, S.; Bouyer, P.; Seery, B. D.; Feinberg, L.; Keski-Kuha, R., An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO), Gen. Relativity Gravitation, 43, 1953-2009 (2011)
[119] Dickerson, S. M.; Hogan, J. M.; Sugarbaker, A.; M. S. Johnson, D.; Kasevich, M. A., Multiaxis inertial sensing with long-time point source atom interferometry, Phys. Rev. Lett., 111, Article 083001 pp. (2013)
[120] Rudolph, J.; Herr, W.; Grzeschik, C.; Sternke, T.; Grote, A.; Popp, M.; Becker, D.; Müntinga, H.; Ahlers, H.; Peters, A.; Lämmerzahl, C.; Sengstock, K.; Gaaloul, N.; Ertmer, W.; Rasel, E. M., A high-flux BEC source for mobile atom interferometers, New J. Phys., 17, 6, Article 065001 pp. (2015)
[121] Geiger, R.; Menoret, V.; Stern, G.; Zahzam, N.; Cheinet, P.; Battelier, B.; Villing, A.; Moron, F.; Lours, M.; Bidel, Y.; Bresson, A.; Landragin, A.; Bouyer, P., Detecting inertial effects with airborne matter-wave interferometry, Nature Commun., 2, 474 (2011)
[122] van Zoest, T.; Gaaloul, N.; Singh, Y.; Ahlers, H.; Herr, W.; Seidel, S. T.; Ertmer, W.; Rasel, E. M.; Eckart, M.; Kajari, E.; Arnold, S.; Nandi, G.; Schleich, W. P.; Walser, R.; Vogel, A.; Sengstock, K.; Bongs, K.; Lewoczko-Adamczyk, W.; Schiemangk, M.; Schuldt, T.; Peters, A.; Könemann, T.; Müntinga, H.; Lämmerzahl, C.; Dittus, H.; Steinmetz, T.; Hänsch, T. W.; Reichel, J., Bose-Einstein condensation in microgravity, Science, 328, 1540-1543 (2010)
[126] Hogan, J. M.; Johnson, D. M.S.; Kasevich, M. A., Light-pulse atom interferometry, (Arimondo, E.; Ertmer, W.; Schleich, W. P.; Rasel, E. M., Atom Optics and Space Physics (2008)), 411
[127] Lan, S.-Y.; Kuan, P.-C.; Estey, B.; Haslinger, P.; Müller, H., Influence of the Coriolis force in atom interferometry, Phys. Rev. Lett., 108, Article 090402 pp. (2012)
[128] Roura, A.; Zeller, W.; P. Schleich, W., Overcoming loss of contrast in atom interferometry due to gravity gradients, New J. Phys., 16, Article 123012 pp. (2014)
[129] Sugarbaker, A.; Dickerson, S. M.; Hogan, J. M.; M. S. Johnson, D.; Kasevich, M. A., Enhanced atom interferometer readout through the application of phase shear, Phys. Rev. Lett., 111, Article 113002 pp. (2013)
[131] Chu, S.; Bjorkholm, J. E.; Ashkin, A.; Cable, A., Experimental observation of optically trapped atoms, Phys. Rev. Lett., 57, 314-317 (1986)
[132] Ammann, H.; Christensen, N., Delta kick cooling: A new method for cooling atoms, Phys. Rev. Lett., 78, 2088-2091 (1997)
[133] Cornell, E. A.; Monroe, C.; Wieman, C. E., Multiply loaded, ac magnetic trap for neutral atoms, Phys. Rev. Lett., 67, 2439-2442 (1991)
[134] Kovachy, T.; Hogan, J. M.; Sugarbaker, A.; Dickerson, S. M.; Donnelly, C. A.; Overstreet, C.; Kasevich, M. A., Matter wave lensing to picokelvin temperatures, Phys. Rev. Lett., 114, Article 143004 pp. (2015)
[135] Storey, P.; Cohen-Tannoudji, C., The Feynman path integral approach to atomic interferometry. A tutorial, J. Phys. II France, 4, 1999-2027 (1994)
[136] Wolf, P.; Tourrenc, P., Gravimetry using atom interferometers: Some systematic effects, Phys. Lett. A, 251, 241-246 (1999)
[137] Bongs, K.; Launay, R.; A. Kasevich, M., High-order inertial phase shifts for time-domain atom interferometers, Appl. Phys. B, 84, 599-602 (2006)
[138] Bordé, C. J., Propagation of laser beams and of atomic systems, (Dalibard, J., Les Houches Lectures on Fundamental Systems in Quantum Optics (1992)), 287-380
[139] Bordé, C. J., Theoretical tools for atom optics and interferometry, C. R. Acad. Sci., Paris - Series IV - Physics, 2, 509-530 (2001)
[140] Bordé, C. J., Atomic clocks and inertial sensors, Metrologia, 39, 435 (2002)
[141] Antoine, C.; Bordé, C. J., Exact phase shifts for atom interferometry, Phys. Lett. A, 306, 277-284 (2003)
[142] Antoine, C.; Bordé, C. J., Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum Semiclass. Opt., 5, S199 (2003)
[143] Bordé, C. J., 5D optics for atomic clocks and gravito-inertial sensors, Eur. Phys. J. Spec. Top., 163, 315-332 (2008)
[144] Kaluza, T., Zum Unitätsproblem der Physik, Sitzungsber. Preuss. Akad. Wiss. Berlin.(Math. Phys.), 1921, 45 (1921) · JFM 48.1327.01
[146] Audretsch, J.; Marzlin, K.-P., Atom interferometry with arbitrary laser configurations : exact phase shift for potentials including inertia and gravitation, J. Phys. II France, 4, 2073-2087 (1994)
[147] Marzlin, K.-P.; Audretsch, J., State independence in atom interferometry and insensitivity to acceleration and rotation, Phys. Rev. A, 53, 312-318 (1996)
[148] Schleich, W. P.; Greenberger, D. M.; Rasel, E. M., A representation-free description of the Kasevich-Chu interferometer: a resolution of the redshift controversy, New J. Phys., 15, Article 013007 pp. (2013) · Zbl 1451.81406
[150] Dubetsky, B.; Kasevich, M. A., Atom interferometer as a selective sensor of rotation or gravity, Phys. Rev. A, 74, Article 023615 pp. (2006)
[151] Giese, E.; Zeller, W.; Kleinert, S.; Meister, M.; Tamma, V.; Roura, A.; Schleich, W. P., The interface of gravity and quantum mechanics illuminated by Wigner phase space, Proc. Internat. School Phys. Enrico Fermi, 171-236 (2014), Volume 188: Atom Interferometry
[152] Cheinet, P.; Canuel, B.; Pereira Dos Santos, F.; Gauguet, A.; Yver-Leduc, F.; Landragin, A., Measurement of the sensitivity function in a time-domain atomic interferometer, IEEE Trans. Instrum. Meas., 57, 1141-1148 (2008)
[153] Jansen, M.; van Leeuwen, K., Initial wavefunction dependence on atom interferometry phases, Appl. Phys. B: Lasers and Optics, 93, 389-401 (2008)
[154] Lämmerzahl, C.; Bordé, C. J., Rabi oscillations in gravitational fields: Exact solution, Phys. Lett. A, 203, 59-67 (1995)
[155] Antoine, C., Matter wave beam splitters in gravito-inertial and trapping potentials: generalized ttt scheme for atom interferometry, Appl. Phys. B, 84, 585-597 (2006)
[156] Antoine, C., Rotating matter-wave beam splitters and consequences for atom gyrometers, Phys. Rev. A, 76, Article 033609 pp. (2007)
[157] Müller, H.; Chiow, S.-W.; Chu, S., Atom-wave diffraction between the Raman-Nath and the Bragg regime: Effective Rabi frequency, losses, and phase shifts, Phys. Rev. A, 77, Article 023609 pp. (2008)
[158] Szigeti, S. S.; Debs, J. E.; Hope, J. J.; Robins, N. P.; Close, J. D., Why momentum width matters for atom interferometry with Bragg pulses, New Journal of Physics, 14, Article 023009 pp. (2012)
[159] Fils, J.; Leduc, F.; Bouyer, P.; Holleville, D.; Dimarcq, N.; Clairon, A.; Landragin, A., Influence of optical aberrations in an atomic gyroscope, Eur. Phys. J. D, 36, 257-260 (2005)
[160] Louchet-Chauvet, A.; Farah, T.; Bodart, Q.; Clairon, A.; Landragin, A.; Merlet, S.; Pereira Dos Santos, F., The influence of transverse motion within an atomic gravimeter, New Journal of Physics, 13, Article 065025 pp. (2011)
[161] Schkolnik, V.; Leykauf, B.; Hauth, M.; Freier, C.; Peters, A., The effect of wavefront aberrations in atom interferometry, Appl. Phys. B, 120, 2, 311-316 (2015)
[162] Haroche, S.; Raimond, J.-M., Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Graduate Texts) (2006), Oxford University Press: Oxford University Press USA · Zbl 1118.81001
[163] Cohen-Tannoudji, C.; Dupont-Roc, J.; Grynberg, G., Atom-Photon Interactions (Wiley Science Paperback Series) (1998), Wiley-VCH
[164] Scully, M. O.; Zubairy, M. S., Quantum Optics (1997), Cambridge University Press
[165] Ferraro, A.; Olivares, S.; Paris, G., Gaussian States in Quantum Information, (Napoli series on physics and astrophysics (2005), Bibliopolis)
[166] Wilcox, R. M., Exponential operators and parameter differentiation in quantum physics, J. Math. Phys., 8, 962-982 (1967) · Zbl 0173.29604
[167] Gustavson, T. L., Precision rotating sensing using atom interferometry (2000), Stanford University, (Ph.D. thesis)
[168] Leduc, F. Y., Caracterisation d’un capteur inertiel a atomes froids (2004), Université Paris XI Orsay, (Ph.D. thesis)
[169] Lévèque, T., Développement d’un gyromètre à atomes froids de haute sensibilité fondé sur une géométrie repliée (2010), Observatoire de Paris, (Ph.D. thesis)
[170] Takase, K., Precision rotation rate measurements with a mobile atom interferometer (2008), Stanford University, (Ph.D. thesis)
[171] Tonyushkin, A.; Prentiss, M., Selective manipulation of degenerate interferometer loops by an atom-optics kicked rotor, Phys. Rev. A, 78, Article 053625 pp. (2008)
[172] Wu, S.; Su, E.; Prentiss, M., Demonstration of an area-enclosing guided-atom interferometer for rotation sensing, Phys. Rev. Lett., 99, Article 173201 pp. (2007)
[173] Miller, D. E.; Anglin, J. R.; Abo-Shaeer, J. R.; Xu, K.; Chin, J. K.; Ketterle, W., High-contrast interference in a thermal cloud of atoms, Phys. Rev. A, 71, Article 043615 pp. (2005)
[174] Hall, B. C., Lie Groups, Lie Algebras, and Representations: An Elementary Introduction (2003), Springer · Zbl 1026.22001
[175] Arvind; Dutta, B.; Mukunda, N.; Simon, R., The real symplectic groups in quantum mechanics and optics, Pramana, 45, 471-497 (1995)
[176] Schleich, W. P., Quantum Optics in Phase Space (2001), Wiley-VCH · Zbl 0961.81136
[177] Sexl, R. U.; Urbantke, H. K., Relativity, Groups, Particles: Special Relativity and Relativistic Symmetry in Field and Particle Physics (1992), Springer · Zbl 0966.83502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.