×

Varying constants, gravitation and cosmology. (English) Zbl 1215.83012

Summary: Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.

MSC:

83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83F05 Relativistic cosmology
85A40 Astrophysical cosmology
85A25 Radiative transfer in astronomy and astrophysics
85-02 Research exposition (monographs, survey articles) pertaining to astronomy and astrophysics

References:

[1] Accetta, F.S., Krauss, L.M. and Romanelli, P., ”New limits on the variability of G from big bang nucleosynthesis”, Phys. Lett. B, 248, 146, (1990). (Cited on pages 83 and 84.) · doi:10.1016/0370-2693(90)90029-6
[2] Acquaviva, V., Baccigalupi, C., Leach, S.M., Liddle, A.R. and Perrotta, F., ”Structure formation constraints on the Jordan-Brans-Dicke theory”, Phys. Rev. D, 71, 104025, (2005). [DOI], [astro-ph/0412052]. (Cited on page 83.) · doi:10.1103/PhysRevD.71.104025
[3] Adams, F.C., ”Stars in other universes: stellar structure with different fundamental constants”, J. Cosmol. Astropart. Phys., 2008(08), 010, (2008). [DOI], [arXiv:0807.3697 [astro-ph]]. (Cited on page 63.) · doi:10.1088/1475-7516/2008/08/010
[4] Adelberger, E.G., ”New tests of Einstein’s equivalence principle and Newton’s inverse-square law”, Class. Quantum Grav., 18, 2397–2405, (2001). [DOI]. (Cited on page 19.) · Zbl 0991.83520 · doi:10.1088/0264-9381/18/13/302
[5] Agrawal, V., Barr, S.M., Donoghue, J.F. and Seckel, D., ”Anthropic considerations in multiple-domain theories and the scale of electroweak symmetry breaking”, Phys. Rev. Lett., 80, 1822, (1998). [DOI], [hep-ph/9801253]. (Cited on page 111.) · doi:10.1103/PhysRevLett.80.1822
[6] Agrawal, V., Barr, S.M., Donoghue, J.F. and Seckel, D., ”Viable range of the mass scale of the standard model”, Phys. Rev. D, 57, 5480–5492, (1998). [DOI], [hep-ph/9707380]. (Cited on page 111.) · doi:10.1103/PhysRevD.57.5480
[7] Aguirre, A., ”Making predictions in a multiverse: conundrums, dangers, coincidences”, in Carr, B.J., ed., Universe or Multiverse?, pp. 367–386, (Cambridge University Press, Cambridge; New York, 2007). [astro-ph/0506519], [Google Books]. (Cited on page 113.)
[8] Amarilla, L. and Vucetich, H., ”Brane-world cosmology and varying G”, Int. J. Mod. Phys. A, 25, 3835–3856, (2010). [DOI], [0908.2949]. (Cited on page 101.) · Zbl 1194.83105 · doi:10.1142/S0217751X10049700
[9] Amendola, L., Baldi, M. and Wetterich, C., ”Quintessence cosmologies with a growing matter component”, Phys. Rev. D, 78, 023015, (2008). [DOI], [arXiv:0706.3064 [astro-ph]]. (Cited on pages 101 and 102.) · doi:10.1103/PhysRevD.78.023015
[10] Anchordoqui, L., Barger, V., Goldberg, H. and Marfatia, D., ”Phase transition in the fine structure constant”, Phys. Lett. B, 660, 529, (2008). [arXiv:0711.4055 [hep-ph]]. (Cited on page 101.) · doi:10.1016/j.physletb.2008.01.047
[11] Anchordoqui, L. and Goldberg, H., ”Time variation of the fine structure constant driven by quintessence”, Phys. Rev. D, 68, 083513, (2003). [DOI], [hep-ph/0306084]. (Cited on pages 24 and 102.) · doi:10.1103/PhysRevD.68.083513
[12] Anderson, J.D., Campbell, J.K., Jurgens, R.F. and Lau, E.L., ”Recent Developments in Solar-System Tests of General Relativity”, in Sato, H. and Nakamura, T., eds., The Sixth Marcel Grossmann Meeting: On recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Proceedings of the meeting held at Kyoto International Conference Hall, Kyoto, Japan, 23–29 June 1991, pp. 353–355, (World Scientific, Singapore, 1992). (Cited on page 77.)
[13] Andreev, O.Y., Labzowsky, L.N., Plunien, G. and Soff, G., ”Testing the time dependence of the fundamental constants in the spectra of multicharged ions”, Phys. Rev. Lett., 94, 243002, (2005). [DOI], [physics/0505081]. (Cited on page 33.) · doi:10.1103/PhysRevLett.94.243002
[14] Angstmann, E.J., Dzuba, V.A. and Flambaum, V.V., ”Atomic clocks and the search for variation of the fine structure constant”, Phys. Rev. A, 70, 014102, (2004). [DOI], [physics/0407141]. (Cited on pages 45 and 105.) · doi:10.1103/PhysRevA.70.014102
[15] Angstmann, E.J., Dzuba, V.A., Flambaum, V.V., Nevsky, A.Y. and Karshenboim, S.G., ”Narrow atomic transitions with enhanced sensitivity to variation of the fine structure constant”, J. Phys. B: At. Mol. Opt. Phys., 39, 1937, (2006). [DOI], [physics/0511180]. (Cited on page 33.) · doi:10.1088/0953-4075/39/8/011
[16] Arai, K., Hashimoto, M. and Fukui, T., ”Primordial nucleosynthesis in the Brans-Dicke theory with a variable cosmological term”, Astron. Astrophys., 179, 17, (1987). [ADS]. (Cited on page 83.)
[17] Ashby, N., Heavner, T.P., Jefferts, S.R., Parker, T.E., Radnaev, A.G. and Dudin, Y.O., ”Testing Local Position Invariance with Four Cesium-Fountain Primary Frequency Standards and Four NIST Hydrogen Masers”, Phys. Rev. Lett., 98, 070802, (2007). [DOI]. (Cited on page 105.) · doi:10.1103/PhysRevLett.98.070802
[18] Ashenfelter, T., Mathews, G.J. and Olive, K.A., ”The chemical evolution of Mg isotopes vs. the time variation of the fine structure constant”, Phys. Rev. Lett., 92, 041102, (2004). [DOI], [astro-ph/0309197]. (Cited on page 49.) · doi:10.1103/PhysRevLett.92.041102
[19] Audi, G., ”The history of nuclidic masses and of their evaluation”, Int. J. Mass Spectrom., 251, 85–94, (2006). [DOI], [physics/0602050]. (Cited on page 74.) · doi:10.1016/j.ijms.2006.01.048
[20] Avelino, P.P., Martins, C.J.A.P., Nunes, N.J. and Olive, K.A., ”Reconstructing the dark energy equation of state with varying constant”, Phys. Rev. D, 74, 083508, (2006). [DOI], [astro-ph/0605690]. (Cited on pages 25 and 102.) · doi:10.1103/PhysRevD.74.083508
[21] Avelino, P.P., Martins, C.J.A.P. and Rocha, G., ”Looking for a varying {\(\alpha\)} in the cosmic microwave background”, Phys. Rev. D, 62, 123508, (2000). [DOI], [astro-ph/0008446]. (Cited on page 65.) · doi:10.1103/PhysRevD.62.123508
[22] Avelino, P.P. et al., ”Early-universe constraints on a time-varying fine structure constant”, Phys. Rev. D, 64, 103505, (2001). [DOI], [astro-ph/0102144]. (Cited on pages 65 and 67.) · doi:10.1103/PhysRevD.64.103505
[23] Baeßler, S., Heckel, B.R., Adelberger, E.G., Gundlach, J.H., Schmidt, U. and Swanson, H.E., ”Improved Test of the Equivalence Principle for Gravitational Self-Energy”, Phys. Rev. Lett., 83, 3585–3588, (1999). [DOI]. (Cited on page 19.) · doi:10.1103/PhysRevLett.83.3585
[24] Bahcall, J.N., Steinhardt, C.L. and Schlegel, D., ”Does the fine-structure constant vary with cosmological epoch?”, Astrophys. J., 600, 520, (2004). [DOI], [astro-ph/0301507]. (Cited on page 58.) · doi:10.1086/379971
[25] Bambi, C. and Drago, A., ”Constraints on temporal variation of fundamental constants from GRBs”, Astropart. Phys., 29, 223, (2008). [DOI], [arXiv:0711.3569 [hep-ph]]. (Cited on page 82.) · doi:10.1016/j.astropartphys.2008.02.001
[26] Barrow, J.D., ”A cosmological limit on the possible variation of G”, Mon. Not. R. Astron. Soc., 184, 677, (1978). (Cited on pages 83 and 84.) · doi:10.1093/mnras/184.4.677
[27] Barrow, J.D., ”Natural Units Before Planck”, Quart. J. R. Astron. Soc., 24, 24–26, (1983). [ADS]. (Cited on page 15.)
[28] Barrow, J.D., ”Observational limits on the time evolution of extra spatial dimensions”, Phys. Rev. D, 35, 1805, (1987). [DOI]. (Cited on page 89.) · doi:10.1103/PhysRevD.35.1805
[29] Barrow, J.D., The Constants of Nature: From Alpha to Omega – The Numbers that Encode the Deepest Secrets of the Universe, (Jonathan Cape, London, 2002). (Cited on pages 9 and 14.) · Zbl 1334.01004
[30] Barrow, J.D., ”Cosmological bounds on spatial variations of physical constants”, Phys. Rev. D, 71, 083520, (2005). [DOI], [astro-ph/0503434]. (Cited on page 106.) · doi:10.1103/PhysRevD.71.083520
[31] Barrow, J.D., ”Varying constants”, Philos. Trans. R. Soc. London, Ser. A, 363, 2139, (2005). [astro-ph/0511440]. (Cited on page 8.) · doi:10.1098/rsta.2005.1634
[32] Barrow, J.D. and Li, B., ”Varying-alpha cosmologies with potentials”, Phys. Rev. D, 78, 083536, (2008). [DOI], [arXiv:0808.1580 [gr-qc]]. (Cited on page 100.) · doi:10.1103/PhysRevD.78.083536
[33] Barrow, J.D. and Magueijo, J., ”Can a changing {\(\alpha\)} explain the Supernovae results?”, Astrophys. J., 532, L87, (2000). [DOI], [astro-ph/9907354]. (Cited on page 24.) · doi:10.1086/312572
[34] Barrow, J.D. and Shaw, D.J., ”Varying-alpha: new constraints from seasonal variations”, Phys. Rev. D, 78, 067304, (2008). [DOI], [arXiv:0806.4317 [hep-ph]]. (Cited on page 105.) · doi:10.1103/PhysRevD.78.067304
[35] Barrow, J.D. and Tipler, F.J., The Anthropic Cosmological Principle, (Oxford University Press, Oxford; New York, 1986). [Google Books]. (Cited on page 112.)
[36] Battye, R.A., Crittenden, R. and Weller, J., ”Cosmic concordance and the fine structure constant”, Phys. Rev. D, 63, 043505, (2001). [DOI], [astro-ph/0008265]. (Cited on page 65.) · doi:10.1103/PhysRevD.63.043505
[37] Bauch, A. and Weyers, S., ”New experimental limit on the validity of local position invariance”, Phys. Rev. D, 65, 081101R, (2002). [DOI]. (Cited on page 104.) · doi:10.1103/PhysRevD.65.081101
[38] Beane, S.R. and Savage, M.J., ”Variation of fundamental couplings and nuclear forces”, Nucl. Phys. A, 717, 91, (2003). [DOI], [hep-ph/0206113]. (Cited on pages 74 and 95.) · doi:10.1016/S0375-9474(02)01586-5
[39] Bekenstein, J.D., ”Fine-structure constant: Is it really a constant”, Phys. Rev. D, 25, 1527, (1982). [DOI]. (Cited on pages 100, 101, and 108.) · doi:10.1103/PhysRevD.25.1527
[40] Bekenstein, J.D., ”Fine-structure constant variability, equivalence principle and cosmology”, Phys. Rev. D, 66, 123514, (2002). [DOI]. (Cited on page 100.) · doi:10.1103/PhysRevD.66.123514
[41] Bekenstein, J.D. and Schiffer, M., ”Varying-fine structure ’constant’ and charged black-hole”, Phys. Rev. D, 80, 123508, (2009). [DOI], [arXiv:0906.4557 [gr-qc]]. (Cited on page 101.) · doi:10.1103/PhysRevD.80.123508
[42] Beloy, K., Borschevsky, A., Schwerdtfeger, P. and Flambaum, V.V., ”Enhanced Sensitivity to the Time Variation of the Fine- · doi:10.1103/PhysRevA.82.022106
[43] Benvenuto, O.G., García-Berro, E. and Isern, J., ”Asteroseismology bound on \.G/G from pulsating white dwarfs”, Phys. Rev. D, 69, 082002, (2004). [DOI]. (Cited on page 81.) · doi:10.1103/PhysRevD.69.082002
[44] Berengut, J.C., Dzuba, V.A. and Flambaum, V.V., ”Enhanced Laboratory Sensitivity to Variation of the Fine-Structure Constant using Highly Charged Ions”, Phys. Rev. Lett., 105, 120801, (2010). [DOI], [arXiv:1007.1068 [physics.atom-ph]]. (Cited on page 33.) · doi:10.1103/PhysRevLett.105.120801
[45] Berengut, J.C., Dzuba, V.A., Flambaum, V.V., Kozlov, M.G., Marchenko, M.V., Murphy, M.T. and Webb, J.K., ”Laboratory spectroscopy and the search for space-time variation of the fine structure constant using QSO spectra”, arXiv, e-print, (2006). [arXiv:physics/0408017]. (Cited on page 45.)
[46] Berengut, J.C., Dzuba, V.A., Flambaum, V.V. and Porsev, S.G., ”A proposed experimental method to determine {\(\alpha\)}-sensitivity of splitting between ground and 7.6 eV isomeric states in 229Th”, Phys. Rev. Lett., 102, 210801, (2009). [DOI], [arXiv:0903.1891 [physics.atom-ph]]. (Cited on page 34.) · doi:10.1103/PhysRevLett.102.210801
[47] Berengut, J.C. and Flambaum, V.V., ”Astronomical and laboratory searches for spacetime variation of fundamental constants”, J. Phys.: Conf. Ser., 264, 012010, (2010). [DOI], [arXiv:1009.3693 [physics.atom-ph]]. (Cited on page 8.) · Zbl 1176.81151 · doi:10.1088/1742-6596/264/1/012010
[48] Berengut, J.C. and Flambaum, V.V., ”Manifestations of a spatial variation of fundamental constants on atomic clocks, Oklo, meteorites, and cosmological phenomena”, arXiv, e-print, (2010). [arXiv:1008.3957 [physics.atom-ph]]. (Cited on page 51.)
[49] Berengut, J.C., Flambaum, V.V. and Dmitriev, V.F., ”Effect of quark-mass variation on big bang nucleosynthesis”, Phys. Lett. B, 683, 114, (2010). [arXiv:0907.2288 [nucl-th]]. (Cited on page 73.) · doi:10.1016/j.physletb.2009.12.002
[50] Berengut, J.C., Flambaum, V.V., King, J.A., Curran, S.J. and Webb, J.K., ”Is there further evidence for spatial variation of fundamental constants?”, arXiv, e-print, (2010). [arXiv:1009.0591 [astro-ph.CO]]. (Cited on pages 51 and 106.)
[51] Bergström, L., Iguri, S. and Rubinstein, H., ”Constraints on the variation of the fine structure constant from big bang nucleosynthesis”, Phys. Rev. D, 60, 045005, (1999). [DOI], [astro-ph/9902157]. (Cited on page 70.) · doi:10.1103/PhysRevD.60.045005
[52] Bertolami, O., Lehnert, R., Potting, R. and Ribeiro, A., ”Cosmological acceleration, varying couplings, and Lorentz breaking”, Phys. Rev. D, 69, 083513, (2004). [DOI], [arXiv:astro-ph/0310344]. (Cited on page 22.) · doi:10.1103/PhysRevD.69.083513
[53] Bertotti, B., Iess, L. and Tortora, P., ”A test of general relativity using radio links with the Cassini spacecraft”, Nature, 425, 374–376, (2003). [DOI]. (Cited on page 20.) · doi:10.1038/nature01997
[54] Biesiada, M. and Malec, B., ”A new white dwarf constraint on the rate of change of the gravitational constant”, Mon. Not. R. Astron. Soc., 350, 644, (2004). [DOI], [astro-ph/0303489]. (Cited on page 81.) · doi:10.1111/j.1365-2966.2004.07677.x
[55] BIPM, The International System of Units (SI), (BIPM, Sèvres, 2006), 8th edition. Online version (accessed 1 March 2011): http://www.bipm.org/en/si/si_brochure/. (Cited on page 15.)
[56] Birge, R.T., ”Probable Values of the General Physical Constants”, Rev. Mod. Phys., 1, 1, (1929). (Cited on page 13.) · doi:10.1103/RevModPhys.1.1
[57] Bize, S. et al., ”Testing the Stability of Fundamental Constants with 199Hg+ Single-Ion Optical Clock”, Phys. Rev. Lett., 90, 150802, (2003). [DOI], [physics/0212109]. (Cited on pages 29 and 30.) · doi:10.1103/PhysRevLett.90.150802
[58] Bize, S. et al., ”Cold atom clocks and applications”, J. Phys. B: At. Mol. Opt. Phys., 38, S449–S468, (2005). [DOI], [physics/0502117]. (Cited on page 29.) · doi:10.1088/0953-4075/38/9/002
[59] Bjorken, J.D., ”Standard Model Parameters and the Cosmological Constant”, Phys. Rev. D, 64, 085008, (2001). [DOI], [hep-ph/0103349]. (Cited on page 9.) · doi:10.1103/PhysRevD.64.085008
[60] Blanchet, L., ”Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 9, lrr-2006-4, (2006). [gr-qc/0202016]. URL (accessed 27 September 2010): http://www.livingreviews.org/lrr-2006-4. (Cited on page 20.) · Zbl 1316.83004
[61] Blatt, S. et al., ”New Limits on Coupling of Fundamental Constants to Gravity Using 87Sr Optical Lattice Clocks”, Phys. Rev. Lett., 100, 140801, (2008). [DOI], [arXiv:0801.1874 [physics.atom-ph]]. (Cited on pages 29, 31, and 105.) · doi:10.1103/PhysRevLett.100.140801
[62] Bohlin, R., Jenkins, E.B., Spitzer Jr, L., York, D.G., Hill, J.K., Savage, B.D. and Snow Jr, T.P., ”A survey of ultraviolet interstellar absorption lines”, Astrophys. J. Suppl. Ser., 51, 277–308, (1983). [DOI]. (Cited on page 60.) · doi:10.1086/190850
[63] Bonifacio, P. et al., ”First stars VII – Lithium in extremely metal poor dwarfs”, Astron. Astrophys., 462, 851–864, (2007). [DOI], [astro-ph/0610245]. (Cited on page 69.) · doi:10.1051/0004-6361:20064834
[64] Bostrom, N., Anthropic Bias: Observation Selection Effects in Science and Philosophy, (Routledge, New York; London, 2002). [Google Books]. (Cited on pages 110 and 113.)
[65] Bousso, R., Hall, L.J. and Nomura, Y., ”Multiverse understanding of cosmological coincidences”, Phys. Rev. D, 80, 063510, (2009). [DOI], [arXiv:0902.2263 [hep-th]]. (Cited on page 112.) · doi:10.1103/PhysRevD.80.063510
[66] Bousso, R. and Polchinski, J., ”Quantization of Four-form Fluxes and Dynamical Neutralization of the Cosmological Constant”, J. High Energy Phys., 2000(06), 006, (2000). [DOI], [hep-th/0004134]. (Cited on page 110.) · Zbl 0990.83543 · doi:10.1088/1126-6708/2000/06/006
[67] Brans, C. and Dicke, R.H., ”Mach’s Principle and a Relativistic Theory of Gravitation”, Phys. Rev., 124, 925–935, (1961). [DOI]. (Cited on pages 7 and 85.) · Zbl 0103.21402 · doi:10.1103/PhysRev.124.925
[68] Brax, P. and Martin, J., ”Dark Energy and the MSSM”, Phys. Rev. D, 75, 083507, (2007). [DOI], [hep-th/0605228]. (Cited on page 109.) · doi:10.1103/PhysRevD.75.083507
[69] Brax, P. and Martin, J., ”Moduli Fields as Quintessence and the Chameleon”, Phys. Lett. B, 647, 320, (2007). [hep-th/0612208]. (Cited on page 94.) · doi:10.1016/j.physletb.2007.02.019
[70] Brax, P., van de Bruck, C., Davis, A.-C., Khoury, J. and Weltman, A., ”Detecting dark energy in orbit: The cosmological chameleon”, Phys. Rev. D, 70, 123518, (2004). [DOI], [astro-ph/0408415]. (Cited on page 99.) · doi:10.1103/PhysRevD.70.123518
[71] Brax, P., van de Bruck, C., Mota, D.F., Nunes, N.J. and Winther, H.A., ”Chameleons with field-dependent couplings”, Phys. Rev. D, 82, (2010). [DOI], [arXiv:1006.2796 [astro-ph.CO]]. (Cited on page 99.)
[72] Bronnikov, K.A. and Kononogov, S.A., ”Possible variations of the fine structure constant {\(\alpha\)} and their metrological significance”, Metrologia, 43, R1, (2006). [DOI], [gr-qc/0604002]. (Cited on page 8.) · doi:10.1088/0026-1394/43/5/R01
[73] Byrne, M. and Kolda, C., ”Quintessence and varying {\(\alpha\)} from shape moduli”, arxiv, e-print, (2004). [arxiv:hep-ph/0402075]. (Cited on page 101.)
[74] Calmet, X. and Fritzsch, H., ”The Cosmological Evolution of the Nucleon Mass and the Electroweak Coupling Constants”, Eur. Phys. J. C, 24, 639–642, (2002). [DOI], [hep-ph/0112110]. (Cited on page 93.) · doi:10.1007/s10052-002-0976-0
[75] Calmet, X. and Fritzsch, H., ”Symmetry Breaking and Time Variation of Gauge Couplings”, Phys. Lett. B, 540, 173, (2002). [hep-ph/0204258]. (Cited on page 93.) · doi:10.1016/S0370-2693(02)02147-0
[76] Calmet, X. and Fritzsch, H., ”A time variation of proton-electron mass ratio and grand unification”, Europhys. Lett., 76, 1064, (2006). [DOI], [astro-ph/0605232]. (Cited on page 93.) · doi:10.1209/epl/i2006-10393-0
[77] Campbell, B.A. and Olive, K.A., ”Nucleosynthesis and the time dependence of fundamental couplings”, Phys. Lett. B, 345, 429–434, (1995). [hep-ph/9411272]. (Cited on pages 70, 75, and 93.) · doi:10.1016/0370-2693(94)01652-S
[78] Carilli, C.L. et al., ”Astronomical Constraints on the Cosmic Evolution of the Fine Structure Constant and Possible Quantum Dimensions”, Phys. Rev. Lett., 85, 5511–5514, (2000). [DOI]. (Cited on page 53.) · doi:10.1103/PhysRevLett.85.5511
[79] Carr, B.J., ed., Universe or Multiverse?, (Cambridge University Press, Cambridge; New York, 2007). [Google Books]. (Cited on page 110.) · Zbl 1119.83002
[80] Carr, B.J. and Rees, M.J., ”The anthropic principle and the structure of the physical world”, Nature, 278, 605–612, (1979). [DOI]. (Cited on pages 7 and 111.) · doi:10.1038/278605a0
[81] Carroll, S.M., ”Quintessence and the Rest of the World: Suppressing Long-Range Interactions”, Phys. Rev. Lett., 81, 3067–3070, (1998). [DOI]. (Cited on pages 23 and 24.) · doi:10.1103/PhysRevLett.81.3067
[82] Carter, B., ”Large number coincidences and the anthropic principle in cosmology”, in Longair, M.S., ed., Confrontation of Cosmological Theories with Observational Data, Proceedings of the 63rd Symposium of the International Astronomical Union (Copernicus Symposium II), held in Cracow, Poland, 10–12 September, 1973, pp. 291–298, (Reidel, Dordrecht, 1974). [ADS]. (Cited on pages 7, 110, and 112.)
[83] Carter, B., ”The anthropic principle and its implication for biological evolution”, Philos. Trans. R. Soc. London, Ser. A, 310, 347, (1983). [DOI]. (Cited on page 7.) · doi:10.1098/rsta.1983.0096
[84] Casas, J.A., García-Bellido, J. and Quirós, M., ”Nucleosynthesis Bounds On Jordan-Brans-Dicke Theories Of Gravity”, Mod. Phys. Lett. A, 7, 447, (1992). [DOI]. (Cited on page 83.) · Zbl 0991.83552 · doi:10.1142/S0217732392000409
[85] Cembranos, J.A.R., Olive, K.A., Peloso, M. and Uzan, J.-P., ”Quantum corrections to the cosmological evolution of conformally coupled fields”, J. Cosmol. Astropart. Phys., 2009(07), 025, (2009). [DOI], [arXiv:0905.1989 [astro-ph.CO]]. (Cited on page 87.) · doi:10.1088/1475-7516/2009/07/025
[86] Centurión, M., Molaro, P. and Levshakov, S., ”Calibration issues in {\(\Delta\)}{\(\alpha\)}{\(\alpha\)}”, Mem. Soc. Astron. Ital., 80, 929, (2009). (Cited on page 50.)
[87] Chacko, Z., Grojean, C. and Perelstein, M., ”Fine structure constant variation from a late phase transition”, Phys. Lett. B, 565, 169, (2003). [hep-ph/0204142]. (Cited on page 101.) · doi:10.1016/S0370-2693(03)00766-4
[88] Chamoun, N., Landau, S.J., Mosquera, M.E. and Vucetich, H., ”Helium and deuterium abundances as a test for the time variation of the baryonic density, fine structure constant and the Higgs vacuum expectation value”, J. Phys. G: Nucl. Part. Phys., 34, 163, (2007). [DOI], [astro-ph/0508378]. (Cited on page 74.) · doi:10.1088/0954-3899/34/2/001
[89] Chan, K.C. and Chu, M.-C., ”Constraining the variation of G by cosmic microwave background anisotropies”, Phys. Rev. D, 75, 083521, (2007). [DOI], [astro-ph/0611851]. (Cited on page 83.) · doi:10.1103/PhysRevD.75.083521
[90] Chand, H., Petitjean, P., Srianand, R. and Aracil, B., ”Probing the cosmological variation of the fine-structure constant: Results based on VLT-UVES sample”, Astron. Astrophys., 417, 853, (2004). [DOI], [astro-ph/0401094]. (Cited on pages 49, 50, and 59.) · doi:10.1051/0004-6361:20035701
[91] Chand, H., Petitjean, P., Srianand, R. and Aracil, B., ”Probing the time-variation of the fine-structure constant: Results based on Si IV doublets from a UVES sample”, Astron. Astrophys., 430, 47–58, (2005). [DOI], [astro-ph/0408200]. (Cited on pages 46, 47, and 59.) · doi:10.1051/0004-6361:20041186
[92] Chand, H., Petitjean, P., Srianand, R. and Aracil, B., ”On the variation of the fine-structure constant: Very high resolution spectrum of QSO HE 0515-4414”, Astron. Astrophys., 451, 45, (2006). [DOI], [astro-ph/0601194]. (Cited on page 51.) · doi:10.1051/0004-6361:20054584
[93] Chandler, J.F., Reasenberg, R.D. and Shapiro, ”New bounds on \.G”, Bull. Am. Astron. Soc., 25, 1233, (1993). (Cited on page 77.)
[94] Chen, X. and Kamionkowski, M., ”Cosmic microwave background temperature and polarization anisotropy in Brans-Dicke cosmology”, Phys. Rev. D, 60, 104036, (1999). [DOI]. (Cited on page 83.) · doi:10.1103/PhysRevD.60.104036
[95] Chengalur, J.N. and Kanekar, N., ”Constraining the variation of fundamental constants using 18 cm OH lines”, Phys. Rev. Lett., 91, 241302, (2003). [DOI], [astro-ph/0310764]. (Cited on pages 53, 54, and 59.) · doi:10.1103/PhysRevLett.91.241302
[96] Chiba, T. and Khori, K., ”Quintessence cosmology and varying a”, Prog. Theor. Phys., 107, 631, (2002). [DOI], [hep-ph/0111086]. (Cited on pages 24, 102, and 108.) · Zbl 1021.83029 · doi:10.1143/PTP.107.631
[97] Chiba, T., Kobayashi, T., Yamaguchi, M. and Yokoyama, J., ”Time variation of proton-electron mass ratio and fine structure constant with runaway dilaton”, Phys. Rev. D, 75, 043516, (2007). [DOI], [hep-ph/0610027]. (Cited on page 99.) · doi:10.1103/PhysRevD.75.043516
[98] Chin, C. and Flambaum, V.V., ”Enhancement of variation of fundamental constants in ultracold atom and molecule systems near Feshbach resonances”, Phys. Rev. Lett., 96, 230801, (2006). [DOI], [cond-mat/0603607]. (Cited on page 33.) · doi:10.1103/PhysRevLett.96.230801
[99] Chupp, T.E., Hoare, R.J., Loveman, R.A., Oteiza, E.R., Richardson, J.M., Wagshul, M.E. and Thompson, A.K., ”Results of a new test of local Lorentz invariance: A search for mass anisotropy in 21Ne”, Phys. Rev. Lett., 63, 1541–1545, (1989). [DOI]. (Cited on page 18.) · doi:10.1103/PhysRevLett.63.1541
[100] Cingöz, A., Lapierre, A., Nguyen, A.-T., Leefer, N., Budker, D., Lamoreaux, S.K. and Torgerson, J.R., ”Limit on the Temporal Variation of the Fine-Structure Constant Using Atomic Dysprosium”, Phys. Rev. Lett., 98, 040801, (2008). [DOI], [physics/0609014]. (Cited on pages 29, 31, and 104.) · doi:10.1103/PhysRevLett.98.040801
[101] Civitarese, O., Moliné, M.A. and Mosquera, M.E., ”Cosmological bounds to the variation of the Higgs vacuum expectation value: BBN constraints”, Nucl. Phys. A, 846, 157, (2010). [DOI]. (Cited on page 75.) · doi:10.1016/j.nuclphysa.2010.06.011
[102] Clifton, T., Barrow, J.D. and Scherrer, R.J., ”Constraints on the variation of G from primordial nucleosynthesis”, Phys. Rev. D, 71, 123526, (2005). [DOI]. (Cited on page 83.) · doi:10.1103/PhysRevD.71.123526
[103] Coc, A., Ekströom, S., Descouvemont, P., Meynet, G., Olive, K.A., Uzan, J.-P. and Vangioni, E., ”Constraints on the variations of fundamental couplings by stellar models”, Mem. Soc. Astron. Ital., 80, 809–813, (2009). [ADS]. (Cited on pages 61 and 63.)
[104] Coc, A., Nunes, N.J., Olive, K.A., Uzan, J.-P. and Vangioni, E., ”Coupled variations of the fundamental couplings and primordial nucleosynthesis”, Phys. Rev. D, 76, 023511, (2007). [DOI], [astro-ph/0610733]. (Cited on pages 63, 71, 75, 93, and 94.) · doi:10.1103/PhysRevD.76.023511
[105] Coc, A., Olive, K.A., Uzan, J.-P. and Vangioni, E., ”Big bang nucleosynthesis constraints on scalar-tensor theories of gravity”, Phys. Rev. D, 73, 083525, (2006). [DOI], [astro-ph/0601299]. (Cited on pages 72, 75, 83, 84, and 87.) · doi:10.1103/PhysRevD.73.083525
[106] Coc, A., Olive, K., Uzan, J.-P. and Vangioni, E., ”Non-universal scalar-tensor theories and big bang nucleosynthesis”, Phys. Rev. D, 79, 103512, (2009). [DOI]. (Cited on pages 83 and 87.) · doi:10.1103/PhysRevD.79.103512
[107] Coc, A. and Vangioni, E., ”Big-Bang Nucleosynthesis with updated nuclear data”, J. Phys.: Conf. Ser., 202, 012001, (2010). [DOI]. (Cited on pages 69 and 72.) · doi:10.1088/1742-6596/202/1/012001
[108] Coc, A., Vangioni-Flam, E., Descouvemont, P., Adahchour, A. and Angulo, C., ”Updated big bang nucleosynthesis compared with Wilkinson Microwave Anisotropy Probe observations and the abundance of light elements”, Astrophys. J., 600, 544, (2004). [DOI], [astro-ph/0309480]. (Cited on pages 69 and 87.) · doi:10.1086/380121
[109] Combes, F., ”Radio measurements of constant variation, and perspective with ALMA”, Mem. Soc. Astron. Ital., 80, 888, (2009). (Cited on page 46.)
[110] Cook, A.H., ”Secular changes of the units and constant of physics”, Nature, 180, 1194, (1957). [DOI]. (Cited on page 17.) · doi:10.1038/1801194b0
[111] Cook, C.W., Fowler, W.A., Lauritsen, C.C. and Lauritsen, T., ”B12, C12, and the Red Giants”, Phys. Rev. D, 107, 508, (1957). [DOI]. (Cited on page 61.) · doi:10.1103/PhysRev.107.508
[112] Copeland, E.J., Nunes, N.J. and Pospelov, M., ”Models of quintessence coupled to the electromagnetic field and the cosmological evolution of {\(\alpha\)}”, Phys. Rev. D, 69, 023501, (2004). [DOI], [hep-ph/0307299]. (Cited on pages 24 and 102.) · doi:10.1103/PhysRevD.69.023501
[113] Copi, C.J., Davis, A.N. and Krauss, L.M., ”New Nucleosynthesis Constraint on the Variation of G”, Phys. Rev. Lett., 92, 171301, (2004). [DOI]. (Cited on page 83.) · doi:10.1103/PhysRevLett.92.171301
[114] Cremmer, E. and Scherk, J., ”Spontaneous Compactification of Extra Space Dimensions”, Nucl. Phys. B, 118, 61, (1977). [DOI]. (Cited on page 89.) · doi:10.1016/0550-3213(77)90363-7
[115] Cristiani, S. et al., ”The CODEX-ESPRESSO experiment: cosmic dynamics, fundamental physics, planets and much more...”, Nuovo Cimento B, 122, 1165–1170, (2007). [DOI], [arXiv:0712.4152 [astro-ph]]. (Cited on page 60.)
[116] Cyburt, R.H., Fields, B.D. and Olive, K.A., ”An update on the big bang nucleosynthesis prediction for 7Li: the problem worsens”, J. Cosmol. Astropart. Phys., 2008(11), 012, (2008). [DOI], [arXiv:0808.2818 [astro-ph]]. (Cited on page 70.) · doi:10.1088/1475-7516/2008/11/012
[117] Cyburt, R.H., Fields, B.D., Olive, K.A. and Skillman, E., ”New BBN limits on physics beyond the standard model from 4He”, Astropart. Phys., 23, 313–323, (2005). [DOI], [astro-ph/0408033]. (Cited on pages 68 and 84.) · doi:10.1016/j.astropartphys.2005.01.005
[118] Damour, T., ”Testing the equivalence principle: why and how?”, Class. Quantum Grav., 13, A33–A41, (1996). [DOI], [gr-qc/9606080]. (Cited on pages 21 and 107.) · Zbl 0875.83024 · doi:10.1088/0264-9381/13/11A/005
[119] Damour, T., ”The Equivalence Principle and the Constants of Nature”, Space Sci. Rev., 148, 191, (2009). [DOI], [arXiv:0906.3174 [gr-qc]]. (Cited on page 8.) · doi:10.1007/s11214-009-9533-6
[120] Damour, T. and Donoghue, J.F., ”Constraints on the variability of quark masses from nuclear binding”, Phys. Rev. D, 78, 014014, (2008). [DOI], [arXiv:0712.2968 [hep-ph]]. (Cited on pages 21, 22, 95, and 111.) · doi:10.1103/PhysRevD.78.014014
[121] Damour, T. and Donoghue, J.F., ”Equivalence Principle Violations and Couplings of a Light Dilaton”, Phys. Rev. D, 82, 084033, 1–20, (2010). [arXiv:1007.2792 [gr-qc]]. (Cited on pages 99 and 107.) · doi:10.1103/PhysRevD.82.084033
[122] Damour, T. and Donoghue, J.F., ”Phenomenology of the Equivalence Principle with Light Scalars”, Class. Quantum Gram., 27, 202001, (2010). [DOI], [arXiv:1007.2790 [gr-qc]]. (Cited on pages 21, 22, 99, and 107.) · Zbl 1202.83017 · doi:10.1088/0264-9381/27/20/202001
[123] Damour, T. and Dyson, F.J., ”The Oklo bound on the time variation of the fine-structure constant revisited”, Nucl. Phys. B, 480, 37–54, (1996). [DOI], [hep-ph/9606486]. (Cited on pages 37, 38, and 39.) · doi:10.1016/S0550-3213(96)00467-1
[124] Damour, T. and Esposito-Farèse, G., ”Tensor-multi-scalar theories of gravitation”, Class. Quantum Grav., 9, 2093–2176, (1992). [DOI]. (Cited on pages 7, 85, 103, and 104.) · Zbl 0780.53054 · doi:10.1088/0264-9381/9/9/015
[125] Damour, T. and Esposito-Farèse, G., ”Gravitational-wave versus binary-pulsar tests of strong-field gravity”, Phys. Rev. D, 58, 042001, (1998). [DOI]. (Cited on pages 20 and 87.) · doi:10.1103/PhysRevD.58.042001
[126] Damour, T., Gibbons, G.W. and Gundlach, C., ”Dark matter, time-varying G, and a dilaton field”, Phys. Rev. Lett., 64, 123, (1990). [DOI]. (Cited on page 100.) · doi:10.1103/PhysRevLett.64.123
[127] Damour, T., Gibbons, G.W. and Taylor, J.H., ”Limits on the Variability of G Using Binary-Pulsar Data”, Phys. Rev. Lett., 61, 1151–1154, (1988). [DOI], [ADS]. (Cited on page 78.) · doi:10.1103/PhysRevLett.61.1151
[128] Damour, T. and Gundlach, C., ”Nucleosynthesis constraints on an extended Jordan-Brans-Dicke theory”, Phys. Rev. D, 43, 3873, (1991). [DOI]. (Cited on page 83.) · doi:10.1103/PhysRevD.43.3873
[129] Damour, T. and Lilley, M., ”String theory, gravity and experiment”, in Bachas, C., Baulieu, L., Douglas, M., Kiritsis, E., Rabinovici, E., Vanhove, P., Windey, P. and Cugliandolo, L.F., eds., String Theory and the Real World: From Particle Physics to Astrophysics, Proceedings of the Les Houches Summer School, Session LXXXVII, 2 July–27 July 2007, Les Houches Summer School Proceedings, 87, pp. 371–448, (Elsevier, Amsterdam, 2008). (Cited on pages 20, 95, and 97.)
[130] Damour, T. and Nordtvedt, K., ”General relativity as a cosmological attractor of tensor-scalar theories”, Phys. Rev. Lett., 70, 2217–2219, (1993). [DOI]. (Cited on page 87.) · doi:10.1103/PhysRevLett.70.2217
[131] Damour, T. and Nordtvedt, K., ”Tensor-scalar cosmological models and their relaxation toward general relativity”, Phys. Rev. D, 48, 3436–3450, (1993). [DOI]. (Cited on page 87.) · doi:10.1103/PhysRevD.48.3436
[132] Damour, T., Piazza, F. and Veneziano, G., ”Runaway dilaton and equivalence principle violations”, Phys. Rev. Lett., 89, 081601, (2002). [DOI], [gr-qc/0204094]. (Cited on page 24.) · doi:10.1103/PhysRevLett.89.081601
[133] Damour, T., Piazza, F. and Veneziano, G., ”Violations of the equivalence principle in a dilaton-runaway scenario”, Phys. Rev. D, 66, 046007, (2002). [DOI], [hep-th/0205111]. (Cited on pages 24 and 99.) · doi:10.1103/PhysRevD.66.046007
[134] Damour, T. and Pichon, B., ”Big bang nucleosynthesis and tensor-scalar gravity”, Phys. Rev. D, 59, 123502, (1999). [DOI], [astro-ph/9807176]. (Cited on pages 24, 75, 83, 84, and 87.) · doi:10.1103/PhysRevD.59.123502
[135] Damour, T. and Polyakov, A.M., ”The string dilaton and a least coupling principle”, Nucl. Phys. B, 423, 532–558, (1994). [DOI], [hep-th/9401069]. (Cited on pages 22, 88, 93, 97, 98, and 108.) · Zbl 0990.81645 · doi:10.1016/0550-3213(94)90143-0
[136] Damour, T. and Polyakov, A.M., ”String theory and gravity”, Gen. Relativ. Gravit., 26, 1171, (1994). [DOI], [gr-qc/9411069]. (Cited on pages 88, 93, 97, and 108.) · doi:10.1007/BF02106709
[137] Damour, T. and Taylor, J.H., ”On the Orbital Period Change of the Binary Pulsar PSR 1913+16”, Astrophys. J., 366, 501–511, (1991). [DOI], [ADS]. (Cited on page 78.) · doi:10.1086/169585
[138] Darling, J., ”A laboratory for constraining cosmic evolution of the fine-structure constant: conjugate 18 centimeter OH lines toward PKS 1413+135 at z = 0.2467”, Astrophys. J., 612, 58, (2004). [DOI], [astro-ph/0405240]. (Cited on pages 54 and 59.) · doi:10.1086/422450
[139] Davies, P.C.W., Davis, T.M. and Lineweaver, C.H., ”Cosmology: Black holes constrain varying constants”, Nature, 418, 602, (2002). [DOI]. (Cited on page 101.) · doi:10.1038/418602a
[140] Del’Innocenti, S. etal, ”Time variation of Newton’s constant and the age of globular clusters”, Astron. Astrophys., 312, 345, (1996). (Cited on pages 79 and 80.)
[141] Demarque, P., Krauss, L.M., Guenther, D.B. and Nydam, D., ”The Sun as a probe of varying G”, Astrophys. J., 437, 870, (1994). [DOI]. (Cited on page 80.) · doi:10.1086/175048
[142] Dent, T., ”Varying alpha, thresholds and fermion masses”, Nucl. Phys. B, 677, 471–484, (2004). [DOI], [hep-ph/0305026]. (Cited on page 94.) · doi:10.1016/j.nuclphysb.2003.10.047
[143] Dent, T., ”Composition-dependent long ran · doi:10.1088/1475-7516/2007/01/013
[144] Dent, T., ”Eötvös bounds on couplings of fundamental parameters to gravity”, Phys. Rev. Lett., 101, 041102, (2008). [DOI], [arXiv:0805.0318 [hep-ph]]. (Cited on page 109.) · doi:10.1103/PhysRevLett.101.041102
[145] Dent, T. and Fairbairn, M., ”Time varying coupling strength, nuclear forces and unification”, Nucl. Phys. B, 653, 256, (2003). [DOI], [hep-ph/0112279]. (Cited on pages 95 and 111.) · doi:10.1016/S0550-3213(03)00043-9
[146] Dent, T., Stern, S. and Wetterich, C., ”Primordial nucleosynthesis as a probe of fundamental physics parameters”, Phys. Rev. D, 76, 063513, (2007). [DOI], [arXiv:0705.0696 [astro-ph]]. (Cited on pages 73, 75, and 94.) · doi:10.1103/PhysRevD.76.063513
[147] Dent, T., Stern, S. and Wetterich, C., ”Unifying cosmological and recent time variations of fundamental couplings”, Phys. Rev. D, 78, 103518, (2008). [DOI], [arXiv:0808.0702 [hep-ph]]. (Cited on pages 43, 52, and 94.) · doi:10.1103/PhysRevD.78.103518
[148] Dent, T., Stern, S. and Wetterich, C., ”Competing bounds on the present-day time variation of fundamental constants”, Phys. Rev. D, 79, 083533, (2009). [DOI], [arXiv:0812.4130 [hep-ph]]. (Cited on page 109.) · doi:10.1103/PhysRevD.79.083533
[149] Dent, T., Stern, S. and Wetterich, C., ”Time variation of fundamental couplings and dynamical dark energy”, J. Cosmol. Astropart. Phys., 2009(01), 038, (2009). [DOI], [arXiv:0809.4628 [hep-ph]]. (Cited on pages 94 and 108.) · doi:10.1088/1475-7516/2009/01/038
[150] Dicke, R.H., ”Dirac’s Cosmology and the Dating of Meteorites”, Nature, 183, 170–171, (1959). [DOI]. (Cited on page 42.) · doi:10.1038/183170a0
[151] Dicke, R.H., ”Dirac’s Cosmology and Mach’s Principle”, Nature, 192, 440, (1961). [DOI]. (Cited on pages 7 and 110.) · Zbl 0111.42405 · doi:10.1038/192440a0
[152] Dicke, R.H., ”Experimental relativity”, in DeWitt, C.M. and DeWitt, B.S., eds., Relativity, Groups and Topology. Relativité, Groupes et Topologie, Lectures delivered at Les Houches during the 1963 session of the Summer School of Theoretical Physics, University of Grenoble, pp. 165–313, (Gordon and Breach, New York; London, 1964). (Cited on pages 21 and 100.)
[153] Dine, M., Nir, Y., Raz, G. and Volansky, T., ”Time Variations in the Scale of Grand Unification”, Phys. Rev. D, 67, 015009, (2003). [DOI], [hep-ph/0209134]. (Cited on page 94.) · doi:10.1103/PhysRevD.67.015009
[154] Dinh, T.H., Dunning, A., Dzuba, V.A. and Flambaum, V.V., ”The sensitivity of hyperfine structure to nuclear radius and quark mass variation”, Phys. Rev. A, 79, 054102, (2009). [DOI], [arXiv:0903.2090 [physics.atom-ph]]. (Cited on page 34.) · doi:10.1103/PhysRevA.79.054102
[155] Dirac, P.A.M., ”The cosmological constants”, Nature, 139, 323, (1937). [DOI]. (Cited on pages 7, 76, and 110.) · Zbl 0016.18504 · doi:10.1038/139323a0
[156] Dirac, P.A.M., ”A new basis for cosmology”, Proc. R. Soc. London, Ser. A, 165, 199–208, (1938). [ADS]. (Cited on page 7.) · Zbl 0018.28801 · doi:10.1098/rspa.1938.0053
[157] Dmitriev, V.F. and Flambaum, V.V., ”Limits on cosmological variation of quark masses and strong interaction”, Phys. Rev. D, 67, 063513, (2003). [DOI], [astro-ph/0209409]. (Cited on pages 22 and 71.) · doi:10.1103/PhysRevD.67.063513
[158] Dmitriev, V.F., Flambaum, V.V. and Webb, J.K., ”Cosmological varation of deuteron binding energy, strong interaction and quark masses from big bang nucleosynthesis”, Phys. Rev. D, 69, 063506, (2004). [DOI], [astro-ph/0310892]. (Cited on page 71.) · doi:10.1103/PhysRevD.69.063506
[159] Donoghue, J.F., ”The nuclear central force in the chiral limit”, Phys. Rev. C, 74, 024002, (2006). [DOI], [nucl-th/0603016]. (Cited on pages 22, 95, and 96.) · doi:10.1103/PhysRevC.74.024002
[160] Donoghue, J.F., Dutta, K. and Ross, A., ”Quark and lepton masses and mixing in the landscape”, Phys. Rev. D, 73, 113002, (2006). [DOI], [hep-ph/0511219]. (Cited on page 111.) · doi:10.1103/PhysRevD.73.113002
[161] Donoghue, J.F., Dutta, K., Ross, A. and Tegmark, M., ”Likely values of the Higgs vev”, Phys. Rev. D, 81, 073003, (2010). [DOI], [arXiv:0903.1024 [hep-ph]]. (Cited on page 111.) · doi:10.1103/PhysRevD.81.073003
[162] Doran, M., ”Can we test Dark Energy with Running Fundamental Constants?”, J. Cosmol. Astropart. Phys., 2005(04), 016, (2005). [DOI], [astro-ph/0411606]. (Cited on pages 24, 25, and 102.) · doi:10.1088/1475-7516/2005/04/016
[163] Dudas, E., ”Theory and phenomenology of type I strings and M theory”, Class. Quantum Grav., 17, R41, (2000). [DOI]. (Cited on page 91.) · Zbl 1052.81582 · doi:10.1088/0264-9381/17/22/201
[164] Duff, M.J., ”Comment on time-variation of fundamental constants”, arxiv, e-print, (2002). [arxiv:hep-th/0208093]. (Cited on page 17.)
[165] Duff, M.J., Okun, L.B. and Veneziano, G., ”Trialogue on the number of fundamental constants”, J. High Energy Phys., 2002(03), 023, (2002). [DOI], [physics/0110060]. (Cited on pages 9 and 16.) · doi:10.1088/1126-6708/2002/03/023
[166] Dvali, G. and Zaldarriaga, M., ”Changing {\(\alpha\)} with Time: Implications For Fifth-Force-Type Experiments and Quintessence”, Phys. Rev. Lett., 88, 091303, (2002). [DOI], [hep-ph/0108217]. (Cited on pages 22, 24, and 108.) · doi:10.1103/PhysRevLett.88.091303
[167] Dyson, F.J., ”Time variation of the charge of the proton”, Phys. Rev. Lett., 19, 1291, (1967). [DOI]. (Cited on page 43.) · doi:10.1103/PhysRevLett.19.1291
[168] Dyson, F.J., ”The Fundamental Constants and Their Time Variation”, in Salam, A. and Wigner, E.P., eds., Aspects of Quantum Theory, pp. 213–236, (Cambridge University Press, Cambridge; New York, 1972). [Google Books]. (Cited on pages 40 and 42.)
[169] Dzuba, V.A. and Flambaum, V.V., ”Atomic optical clocks and search for the variation of the fine-structure constant”, Phys. Rev. A, 61, 034502, (2000). [DOI]. (Cited on page 44.) · doi:10.1103/PhysRevA.61.034502
[170] Dzuba, V.A. and Flambaum, V.V., ”Atomic clocks and search for variation of the fine structure constant”, Phys. Rev. A, 61, 034502, (2001). [DOI]. (Cited on page 28.) · doi:10.1103/PhysRevA.61.034502
[171] Dzuba, V.A. and Flambaum, V.V., ”Fine-structure and search of variation of the fine-structure constant in laboratory experiments”, Phys. Rev. A, 72, 052514, (2005). [DOI], [physics/0510072]. (Cited on page 33.) · doi:10.1103/PhysRevA.72.052514
[172] Dzuba, V.A. and Flambaum, V.V., ”Sensitivity of the energy levels of singly ionized cobalt to the variation of the fine structure constant”, Phys. Rev. A, 81, 034501, (2010). [DOI], [arXiv:1002.1750 [astro-ph.CO]]. (Cited on page 60.) · doi:10.1103/PhysRevA.81.034501
[173] Dzuba, V.A. and Flambaum, V.V., ”Theoretical study of the experimentally important states of dysprosium”, Phys. Rev. A, 81, 052515, (2010). [DOI], [arXiv:1003.1184 [physics.atom-ph]]. (Cited on page 31.) · doi:10.1103/PhysRevA.81.052515
[174] Dzuba, V.A., Flambaum, V.V. and Marchenko, M.V., ”Relativistic effect in Sr, Dy, YbII, and YbIII and search for variation of the fine structure constant”, Phys. Rev. A, 68, 022506, (2003). [DOI], [physics/0305066]. (Cited on pages 28 and 31.) · doi:10.1103/PhysRevA.68.022506
[175] Dzuba, V.A., Flambaum, V.V. and Webb, J.K., ”Calculations of the relativistic effects in many electron atoms and space-time variation of fundamental constants”, Phys. Rev. A, 59, 230, (1999). [DOI], [physics/9808021]. (Cited on pages 28, 31, 44, and 45.) · doi:10.1103/PhysRevA.59.230
[176] Dzuba, V.A., Flambaum, V.V. and Webb, J.K., ”Space-time variation of physical constants and relativistic corrections in atoms”, Phys. Rev. Lett., 82, 888, (1999). [DOI]. (Cited on page 47.) · doi:10.1103/PhysRevLett.82.888
[177] Eardley, D.M., ”Observable effects of a scalar gravitational field in a binary pulsar”, Astrophys. J. Lett., 196, L59–L62, (1975). [DOI], [ADS]. (Cited on pages 77 and 78.) · doi:10.1086/181744
[178] Eddington, A., Relativity Theory of Protons and Electrons, (Cambridge University Press, Cambridge, 1936). (Cited on page 110.) · Zbl 0015.42201
[179] Eddington, A., Fundamental Theory, (Cambridge University Press, Cambridge, 1948). (Cited on page 110.) · Zbl 0063.01209
[180] Ekström, S., Coc, A., Descouvemont, P., Meynet, G., Olive, K.A., Uzan, J.-P. and Vangioni, E., ”Effects of the variation of fundamental constants on Population III stellar evolution”, Astron. Astrophys., 514, A62, (2010). [DOI], [arXiv:0911.2420 [astro-ph.SR]]. (Cited on page 63.) · doi:10.1051/0004-6361/200913684
[181] Ekström, S., Meynet, G., Chiappini, C., Hirschi, R. and Maeder, A., ”Effects of rotation on the evolution of primordial stars”, Astron. Astrophys., 489, 685, (2008). [DOI], [arXiv:0807.0573 [astro-ph]]. (Cited on page 63.) · doi:10.1051/0004-6361:200809633
[182] Ellis, G.F.R., Kirchner, U. and Stoeger, W.R., ”Multiverses and physical cosmology”, Mon. Not. R. Astron. Soc., 34, 921, (2004). [DOI], [astro-ph/0305292]. (Cited on page 113.) · doi:10.1111/j.1365-2966.2004.07261.x
[183] Ellis, G.F.R. and Uzan, J.-P., ”’c’ is the speed of light, isn’t it?”, Am. J. Phys., 73, 240–247, (2005). [DOI], [gr-qc/0305099]. (Cited on pages 14, 86, and 101.) · doi:10.1119/1.1819929
[184] Ellis, J., Ibáñez, L. and Ross, G.G., ”Grand Unification with Large Supersymmetry Breaking”, Phys. Lett. B, 113, 283–287, (1982). [DOI]. (Cited on page 93.) · doi:10.1016/0370-2693(82)90040-5
[185] Ellis, J., Ibáñez, L. and Ross, G.G., ”SU(2)L {\(\times\)} U(1) Symmetry Breaking as a Radiative Effect of Supersymmetry Breaking in Guts”, Phys. Lett. B, 110, 215–220, (1982). [DOI]. (Cited on page 93.) · doi:10.1016/0370-2693(82)90948-0
[186] Ellis, J., Kalara, S., Olive, K.A. and Wetterich, C., ”Density-dependent couplings and astrophysical bounds on light scalar particles”, Phys. Lett. B, 228, 264, (1989). (Cited on page 99.) · doi:10.1016/0370-2693(89)90669-2
[187] Ellison, S.L., Ryan, S.G. and Prochaska, J.X., ”The first detection of cobalt in a damped Lyman alpha system”, Mon. Not. R. Astron. Soc., 326, 628, (2001). [DOI], [astro-ph/0104301]. (Cited on page 60.) · doi:10.1046/j.1365-8711.2001.04622.x
[188] Epelbaum, E., Meissner, U.G. and Gloöckle, W., ”Nuclear forces in the chiral limit”, Nucl. Phys. A, 714, 535–574, (2003). [DOI], [nucl-th/0207089]. (Cited on pages 74 and 95.) · Zbl 1006.81560 · doi:10.1016/S0375-9474(02)01393-3
[189] Esposito-Farèse, G., ”Tests of Alternative Theories of Gravity”, in Hewett, J., Jaros, J., Kamae, T. and Prescott, C., eds., Gravity in the Quantum World and the Cosmos, Proceedings of the 33rd SLAC Summer Institute on Particle Physics (SSI 2005), Menlo Park, USA, 25 July–5 August 2005, 819, (SLAC, Stanford, 2005). URL (accessed 27 September 2010): http://www.slac.stanford.edu/econf/C0507252/papers/T025.PDF. (Cited on pages 20 and 87.)
[190] Esposito-Farèse, G., ”Motion in alternative theories of gravity”, in Blanchet, L., Spallicci, A. and Whiting, B., eds., Mass and Motion in General Relativity, Lectures from the CNRS School on Mass held in Orléans, France, 23–25 June 2008, Fundamental Theories of Physics, 162, pp. 461–489, (Springer, Berlin; New York, 2011). [DOI], [arXiv:0905.2575 [gr-qc]]. (Cited on page 18.)
[191] Esposito-Farèse, G. and Polarski, D., ”Scalar-tensor gravity in an accelerating universe”, Phys. Rev. D, 63, 063504, (2001). [DOI], [gr-qc/0009034]. (Cited on page 86.) · doi:10.1103/PhysRevD.63.063504
[192] Fenner, Y., Murphy, M.T. and Gibson, B.K., ”On variations in the fine-structure constant and stellar pollution of quasar absorption systems”, Mon. Not. R. Astron. Soc., 358, 468, (2005). [DOI], [astro-ph/0501168]. (Cited on page 49.) · doi:10.1111/j.1365-2966.2005.08781.x
[193] Ferrel, S.J. et al., ”Investigation of the gravitational potential dependence of the fine-structure constant using atomic dyprosium”, Phys. Rev. A, 76, 062104, (2007). [DOI], [arXiv:0708.0569 [physics.atom-ph]]. (Cited on page 104.) · doi:10.1103/PhysRevA.76.062104
[194] Ferrero, A. and Altschul, B., ”Limits on the Time Variation of the Fermi Constant GF Based on Type Ia Supernova Observations”, Phys. Rev. D, 82, 123002, 1–8, (2010). [DOI], [arXiv:1008.4769 [hep-ph]]. (Cited on page 81.) · doi:10.1103/PhysRevD.82.123002
[195] Fierz, M., ”On the physical interpretation of P. Jordan’s extended theory of gravitation”, Helv. Phys. Acta, 29, 128, (1956). (Cited on pages 7, 85, and 100.)
[196] Fischer, M. et al., ”New limits on the drift of fundamental constants from laboratory measurements”, Phys. Rev. Lett., 92, 230802, (2004). [DOI], [physics/0312086]. (Cited on pages 29 and 30.) · doi:10.1103/PhysRevLett.92.230802
[197] Flambaum, V.V., ”Limits on temporal variation of quark masses and strong interaction from atomic clock experiments”, arxiv, e-print, (2003). [arxiv:physics/0302015]. (Cited on page 96.)
[198] Flambaum, V.V., ”Limits on temporal variation of fine structure constant, quark masses and strong interaction from atomic clock experiments”, in Hannaford, P., Sidorov, A., Bachor, H. and Baldwin, K., eds., Laser Spectroscopy, Proceedings of the XVI International Conference, Palm Cove, Australia, 13–18 July 2003, pp. 49–57, (World Scientific, Singapore, 2004) [physics/0309107]. (Cited on pages 28, 32, and 33.)
[199] Flambaum, V.V., ”Enhanced effect of temporal variation of the fine-structure constant and the strong interaction in 229Th”, Phys. Rev. Lett., 97, 092502, (2006). [DOI], [physics/0604188]. (Cited on pages 33 and 34.) · doi:10.1103/PhysRevLett.97.092502
[200] Flambaum, V.V. and Dzuba, V.A., ”Search for variation of the fundamental constants in atomic, molecular and nuclear spectra”, Can. J. Phys., 87, 25, (2009). [DOI], [arXiv:0805.0462 [physics.atom-ph]]. (Cited on page 33.) · doi:10.1139/p08-072
[201] Flambaum, V.V. and Kozlov, M.G., ”Enhanced sensitivit · doi:10.1103/PhysRevLett.98.240801
[202] Flambaum, V.V. and Kozlov, M.G., ”Enhanced sensitivity to variation of the fine · doi:10.1103/PhysRevLett.99.150801
[203] Flambaum, V.V., Lambert, S. and Pospelov, M., ”Scalar-tensor theories with pseudo-scalar couplings”, Phys. Rev. D, 80, 105021, (2009). [DOI], [arXiv:0902.3217 [hep-ph]]. (Cited on page 101.) · doi:10.1103/PhysRevD.80.105021
[204] Flambaum, V.V., Leinweber, D.B., Thomas, A.W. and Young, R.D., ”Limits on the temporal variation of the fine structure constant, quark masses and strong interaction from quasar absorption spectra and atomic clock experiments”, Phys. Rev. D, 69, 115006, (2004). [hep-ph/0402098]. (Cited on pages 33, 95, and 96.) · doi:10.1103/PhysRevD.69.115006
[205] Flambaum, V.V. and Porsev, S.G., ”Enhanced sensitivity to the fine-structure constant variation in Th IV atomic clock transition”, Phys. Rev. A, 80, 064502, (2009). [DOI], [arXiv:0910.3459 [physics.atom-ph]]. (Cited on page 33.) · doi:10.1103/PhysRevA.80.064502
[206] Flambaum, V.V. and Porsev, S.G., ”Comment on ’21-cm Radiation: A New Probe of Variation in the Fine-Structure Constant”’, Phys. Rev. Lett., 105, 039001, (2010). [DOI], [arXiv:1004.2540 [astro-ph.CO]]. (Cited on page 68.) · doi:10.1103/PhysRevLett.105.039001
[207] Flambaum, V.V. and Shuryak, E.V., ”Limits on cosmological variation of strong interaction and quark masses from big bang nucleosynthesis, cosmic, laboratory and Oklo data”, Phys. Rev. D, 65, 103503, (2002). [DOI], [hep-ph/0201303]. (Cited on pages 39, 71, 73, and 74.) · doi:10.1103/PhysRevD.65.103503
[208] Flambaum, V.V. and Shuryak, E.V., ”Dependence of hadronic properties on quark and constraints on their cosmological variation”, Phys. Rev. D, 67, 083507, (2003). [DOI], [hep-ph/0212403]. (Cited on pages 22, 40, 71, 74, and 95.) · doi:10.1103/PhysRevD.67.083507
[209] Flambaum, V.V. and Shuryak, E.V., ”How changing physical constants and violation of local position invariance may occur?”, in Danielewicz, P., Piecuch, P. and Zelevinsky, V., eds., Nuclei and Mesoscopic Physics, Workshop in East Lansing (Michigan), 20–22 October 2007, AIP Conference Proceedings, 995, pp. 1–11, (American Institute of Physics, Melville, NY, 2008). [DOI], [physics/0701220]. (Cited on pages 104 and 105.)
[210] Flambaum, V.V. and Tedesco, A.F., ”Dependence of nuclear magnetic moments on quark masses and limits on temporal variation of fundamental constants from atomic clock experiments”, Phys. Rev. C, 73, 055501, (2006). [DOI], [nucl-th/060150]. (Cited on pages 28, 32, 33, and 105.) · doi:10.1103/PhysRevC.73.055501
[211] Flambaum, V.V. and Wiringa, R.B., ”Dependence of nuclear binding on hadronic mass variation”, Phys. Rev. C, 76, 054002, (2007). [DOI], [arXiv:0709.0077 [nucl-th]]. (Cited on page 96.) · doi:10.1103/PhysRevC.76.054002
[212] Flambaum, V.V. and Wiringa, R.B., ”Enhanced effect of quark mass variation in 229Th and limits from Oklo data”, Phys. Rev. C, 79, 034302, (2009). [DOI], [arXiv:0807.4943 [nucl-th]]. (Cited on page 39.) · doi:10.1103/PhysRevC.79.034302
[213] Flowers, J.L. and Petley, B.W., ”Progress in our knowledge of the fundamental constants of physics”, Rep. Prog. Phys., 64, 1191, (2001). [DOI]. (Cited on pages 10 and 13.) · doi:10.1088/0034-4885/64/10/201
[214] Fortier, T.M. et al., ”Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance”, Phys. Rev. Lett., 98, 070801, (2007). [DOI]. (Cited on pages 29, 30, and 104.) · doi:10.1103/PhysRevLett.98.070801
[215] Fritzsch, H., The fundamental constants, a mistery of physics, (World Scientific, Singapore, 2009). (Cited on page 9.)
[216] Fritzsch, H., ”The Fundamental Constants in Physics”, Phys. Usp., 52, 359, (2009). [DOI], [arXiv:0902.2989 [hep-ph]]. (Cited on page 9.) · doi:10.3367/UFNe.0179.200904d.0383
[217] Fujii, Y., ”Accelerating universe and the time-dependent fine-structure constant”, Mem. Soc. Astron. Ital., 80, 780, (2009). (Cited on page 102.)
[218] Fujii, Y. and Iwamoto, A., ”Re/OS constraint on the time variability of the fine structure constant”, Phys. Rev. Lett., 91, 261101, (2003). [DOI], [hep-ph/0309087]. (Cited on pages 41 and 44.) · doi:10.1103/PhysRevLett.91.261101
[219] Fujii, Y. and Iwamoto, A., ”How strongly does dating meteorites constrain the time-dependence of the fine-structure constant?”, Mod. Phys. Lett. A, 20, 2417–2434, (2005). [DOI], [hep-ph/0508072]. (Cited on pages 41 and 44.) · doi:10.1142/S0217732305018499
[220] Fujii, Y., Iwamoto, A., Fukahori, T., Ohnuki, T., Nakagawa, M., Hidaka, H., Oura, Y. and Möoller, P., ”The nuclear interaction at Oklo 2 billion years ago”, Nucl. Phys. B, 573, 377, (2000). [DOI], [hep-ph/9809549]. (Cited on pages 37, 38, and 39.) · doi:10.1016/S0550-3213(00)00038-9
[221] Furlanetto, S.R., Oh, S.P. and Briggs, F.H., ”Cosmology at low frequencies: The 21 cm transition and the high-redshift universe”, Phys. Rep., 433, 181, (2006). [DOI], [astro-ph/0608032]. (Cited on pages 66, 67, and 68.) · doi:10.1016/j.physrep.2006.08.002
[222] Furnstahl, R.J. and Serot, B.D., ”Parameter counting in relativistic mean-field models”, Nucl. Phys. A, 671, 447, (2000). [DOI], [nucl-th/9911019]. (Cited on page 95.) · doi:10.1016/S0375-9474(99)00839-8
[223] Gambini, R. and Pullin, J., ”Discrete Quantum Gravity: A Mechanism for Selecting the Value of Fundamental Constants”, Int. J. Mod. Phys. D, 12, 1775–1781, (2003). [DOI], [gr-qc/0306095]. (Cited on page 101.) · doi:10.1142/S0218271803004018
[224] Gamow, G., ”Electricity, gravity and cosmology”, Phys. Rev. Lett., 19, 759, (1967). (Cited on pages 63, 76, and 79.) · doi:10.1103/PhysRevLett.19.759
[225] García-Berro, E., Hernanz, M., Isern, J. and Mochkovitch, R., ”The rate of change of the gravitational constant and the cooling of white dwarfs”, Mon. Not. R. Astron. Soc., 277, 801–810, (1995). [ADS]. (Cited on page 81.) · doi:10.1093/mnras/277.3.801
[226] García-Berro, E., Isern, J. and Kubyshin, Y.A., ”Astronomical measurements and constraints on the variability of fundamental constants”, Astron. Astrophys. Rev., 14, 113–170, (2007). [DOI], [astro-ph/0409424]. (Cited on page 8.) · doi:10.1007/s00159-006-0004-8
[227] García-Berro, E., Kubyshin, Y., Loren-Aguilar, P. and Isern, J., ”The variation of the gravitational constant inferred from the Hubble diagram of Type Ia supernovae”, Int. J. Mod. Phys. D, 15, 1163–1174, (2006). [DOI], [gr-qc/0512164]. (Cited on page 81.) · Zbl 1119.85312 · doi:10.1142/S0218271806008772
[228] Garriga, J. and Vilenkin, A., ”On likely values of the cosmological constant”, Phys. Rev. D, 61, 083502, (2000). [DOI], [astro-ph/9908115]. (Cited on page 113.) · doi:10.1103/PhysRevD.61.083502
[229] Gasperini, M., Piazza, F. and Veneziano, G., ”Quintessence as a runaway dilaton”, Phys. Rev. D, 65, 023508, (2002). [DOI]. (Cited on pages 23 and 99.) · doi:10.1103/PhysRevD.65.023508
[230] Gasser, J. and Leutwyler, H., ”Quark Masses”, Phys. Rep., 87, 77, (1982). [DOI]. (Cited on pages 22 and 73.) · doi:10.1016/0370-1573(82)90035-7
[231] Gay, P.L. and Lambert, D.L., ”The Isotopic Abundances of Magnesium in Stars”, Astrophys. J., 533, 260, (2000). [DOI], [astro-ph/9911217]. (Cited on page 49.) · doi:10.1086/308653
[232] Gaztañaga, E., García-Berro, E., Isern, J., Bravo, E. and Dominguez, I., ”Bounds On The Possible Evolution Of The Gravitational Constant From Cosmological Type Ia Supernovae”, Phys. Rev. D, 65, 023506, (2002). (Cited on page 81.) · doi:10.1103/PhysRevD.65.023506
[233] Goldman, I., ”Upper limit on G variability derived from the spin-down of PSR 0655+64”, Mon. Not. R. Astron. Soc., 244, 184–187, (1990). [ADS]. (Cited on page 78.)
[234] Gould, C.R., Sharapov, E.I. and Lamoreaux, S.K., ”Time-variability of {\(\alpha\)} from realistic models of Oklo reactors”, Phys. Rev. C, 74, 024607, (2006). [DOI], [nucl-ex/0701019]. (Cited on pages 37, 38, and 39.) · doi:10.1103/PhysRevC.74.024607
[235] Granda, L.N. and Escobar, L.D., ”Holographic dark energy with non-minimal coupling”, arXiv, e-print, (2009). [arXiv:0910.0515 [hep-th]]. (Cited on page 102.)
[236] Griest, K., Whitmore, J.B., Wolfe, A.M., Prochaska, J.X., Howk, J.C. and Marcy, G.W., ”Wavelengths accuracy of the Keck HIRES spectrograph and measuring changes in the fine structure constant”, Astrophys. J., 708, 158, (2010). [DOI], [arXiv:0904.4725 [astro-ph.CO]]. (Cited on pages 48 and 50.) · doi:10.1088/0004-637X/708/1/158
[237] Gross, D.J. and Sloan, J.H., ”The Quartic Effective Action for the Heterotic String”, Nucl. Phys. B, 291, 41–89, (1987). [DOI]. (Cited on page 90.) · doi:10.1016/0550-3213(87)90465-2
[238] Grupe, D., Pradhan, A.K. and Frank, S., ”Studying the variation of the fine structure constant using emission-line multiplets”, Astron. J., 130, 355, (2005). [DOI], [astro-ph/0504027]. (Cited on page 58.) · doi:10.1086/430886
[239] Guenther, D.B., Krauss, L.M. and Demarque, P., ”Testing the Constancy of the Gravitational Constant Using Helioseismology”, Astrophys. J., 498, 871–876, (1998). [DOI]. (Cited on page 80.) · doi:10.1086/305567
[240] Guenther, D.B., Sills, K., Demarque, P. and Krauss, L.M., ”Sensitivity of solar g-modes to varying G cosmologies”, Astrophys. J., 445, 148–151, (1995). [DOI], [ADS]. (Cited on page 80.) · doi:10.1086/175680
[241] Gundlach, J.H. and Merkowitz, S.M., ”Measurement of Newton’s Constant Using a Torsion Balance with Angular Acceleration Feedback”, Phys. Rev. Lett., 85, 2869, (2000). [DOI]. (Cited on page 76.) · doi:10.1103/PhysRevLett.85.2869
[242] Gurzadyan, V.G. et al., ”A new limit on the light speed isotropy from the GRAAL experiment at the ESRF”, arXiv, e-print, (2010). [arXiv:1004.2867 [physics.acc-ph]]. (Cited on page 22.)
[243] Hall, L.J. and Nomura, Y., ”Evidence for the Multiverse in the Standard Model and Beyond”, Phys. Rev. D, 78, 035001, (2008). [DOI], [arXiv:0712.2454 [hep-ph]]. (Cited on page 112.) · doi:10.1103/PhysRevD.78.035001
[244] Hannestad, S., ”Possible constraints on the time variation of the fine structure constant from cosmic microwave background data”, Phys. Rev. D, 60, 023515, (1999). [DOI], [astro-ph/9810102]. (Cited on page 65.) · doi:10.1103/PhysRevD.60.023515
[245] Harnik, R., Kribs, G.D. and Perez, G., ”A Universe Without Weak Interactions”, Phys. Rev. D, 74, 035006, (2006). [DOI], [hep-ph/0604027]. (Cited on page 111.) · doi:10.1103/PhysRevD.74.035006
[246] Haugan, M.P. and Will, C.M., ”Weak Interactions and Eöotvöos Experiments”, Phys. Rev. Lett., 37, 1, (1976). [DOI]. (Cited on page 21.) · doi:10.1103/PhysRevLett.37.1
[247] Hayes, A.C. and Friar, J.L., ”Sensitivity of nuclear transition frequencies to temporal variation of the fine structure constant or the strong interaction”, Phys. Lett. B, 650, 229, (2007). [nucl-th/0702048]. (Cited on page 34.) · doi:10.1016/j.physletb.2007.05.021
[248] Heintzmann, H. and Hillebrandt, H., ”Pulsar slow-down and the temporal change of G”, Phys. Lett. A, 54, 349, (1975). [DOI]. (Cited on page 78.) · doi:10.1016/0375-9601(75)90764-1
[249] Hellings, R.W., Adams, P.J., Anderson, J.D., Keesey, M.S., Lau, E.L., Standish, E.M., Canuto, V.M. and Goldman, I., ”Experimental Test of the Variability of G Using Viking Lander Ranging Data”, Phys. Rev. Lett., 51, 1609–1612, (1983). [DOI]. (Cited on page 77.) · doi:10.1103/PhysRevLett.51.1609
[250] Henkel, C. et al., ”The density, the cosmic microwave background, and the proton-to-electron mass ratio in a cloud at redshift 0.9”, Astron. Astrophys., 500, 745, (2009). [DOI], [arXiv:0904.3081 [astro-ph.CO]]. (Cited on pages 57 and 59.) · doi:10.1051/0004-6361/200811475
[251] Hill, H.A. and Gu, Y.-M., ”Extension of range in radial order in detection and mode classification of solar low-degree gravity modes”, Sci. China Ser. A, 33, 854–866, (1990). (Cited on page 80.)
[252] Hogan, C.J., ”Why the universe is just so”, Rev. Mod. Phys., 72, 1149–1161, (2000). [DOI], [astro-ph/9909295]. (Cited on pages 7 and 111.) · doi:10.1103/RevModPhys.72.1149
[253] Hogan, C.J., ”Nuclear astrophysics of worlds in the string landscape”, Phys. Rev. D, 74, 123514, (2006). [DOI], [astro-ph/0602104]. (Cited on page 111.) · doi:10.1103/PhysRevD.74.123514
[254] Hogan, C.J., ”Quarks, electrons and atoms in closely related universes”, in Carr, B.J., ed., Universe or Multiverse?, pp. 221–230, (Cambridge University Press, Cambridge; New York, 2007). [astro-ph/0407086], [Google Books]. (Cited on page 111.) · Zbl 1255.83147
[255] Hořava, P. and Witten, E., ”Heterotic and type I string dynamics from eleven-dimension”, Nucl. Phys. B, 460, 506–524, (1996). [DOI], [hep-th/9510209]. (Cited on page 91.) · Zbl 1004.81525 · doi:10.1016/0550-3213(95)00621-4
[256] Hoyle, C.D., Kapner, D.J., Heckel, B.R., Adelberger, E.G., Gundlach, J.H., Schmidt, U. and Swanson, H.E., ”Submillimeter tests of the gravitational inverse-square law”, Phys. Rev. D, 70, 042004, (2004). [DOI], [hep-ph/0405262]. (Cited on page 20.) · doi:10.1103/PhysRevD.70.042004
[257] Hoyle, F., ”On nuclear reactions occuring in very hot stars. I. The synthesis of elements from carbon to nickel”, Astrophys. J. Suppl. Ser., 1, 121, (1954). [DOI]. (Cited on page 61.) · doi:10.1086/190005
[258] Hoyle, F., Galaxies, Nuclei and Quasars, (Harper & Row, New York, 1965). (Cited on page 110.)
[259] Ichikawa, K., Kanzaki, T. and Kawasaki, M., ”CMB constraints on the simultaneous variation of the fine structure constant and electron mass”, Phys. Rev. D, 74, 023515, (2006). [DOI], [astro-ph/0602577]. (Cited on pages 66 and 67.) · doi:10.1103/PhysRevD.74.023515
[260] Ichikawa, K. and Kawasaki, M., ”Big bang nucleosynthesis with a varying fine structure constant and non standard expansion rate”, Phys. Rev. D, 69, 123506, (2005). [hep-ph/0401231]. (Cited on page 70.) · doi:10.1103/PhysRevD.69.123506
[261] Ivanchik, A., Petitjean, P., Varshalovich, D., Aracil, B., Srianand, R., Chand, H., Ledoux, C. and Boissé, P., ”A new constraint on the time dependence of the proton-to-electron mass ratio: Analysis of the Q 0347-383 and Q 0405-443 spectra”, Astron. Astrophys., 440, 45–52, (2005). [DOI], [astro-ph/0507174]. (Cited on page 56.) · doi:10.1051/0004-6361:20052648
[262] Ivanchik, A., Rodriguez, E., Petitjean, P. and Varshalovich, D., ”Do the fundamental constants vary in the course of the cosmological evolution?”, Astron. Lett., 28, 423, (2002). [DOI], [astro-ph/0112323]. (Cited on page 55.) · doi:10.1134/1.1491963
[263] Ivanov, T.L., Roudjane, M., Vieitez, M.O., de Lange, C.A., Tchang-Brillet, W.-Ü.L. and Ubachs, W., ”HD as a Probe for Detecting Mass Variation on a Cosmological Time Scale”, Phys. Rev. Lett., 100, 093007, (2009). [DOI]. (Cited on page 57.) · doi:10.1103/PhysRevLett.100.093007
[264] Jaffe, R.L., Jenkins, A. and Kimchi, I., ”Quark Masses: An Environmental Impact Statement”, Phys. Rev. D, 79, 065014, (2009). [DOI], [arXiv:0809.1647 [hep-ph]]. (Cited on page 111.) · doi:10.1103/PhysRevD.79.065014
[265] Jenkins, J.H., Fischbach, E., Buncher, J.B., Gruenwald, J.T., Krause, D.E. and Mattes, J.J., ”Evidence for correlations between nuclear decay rates and Earth-Sun distance”, Astropart. Phys., 32, 42, (2009). [DOI], [arXiv:0808.3283 [astro-ph]]. (Cited on page 105.) · doi:10.1016/j.astropartphys.2009.05.004
[266] Jofré, P., Reisenegger, A. and Fernández, R., ”Constraining a possible time-variation of the gravitational constant through ’gravitochemical heating’ of neutron stars”, Phys. Rev. Lett., 97, 131102, (2006). [DOI], [astro-ph/0606708]. (Cited on page 79.) · doi:10.1103/PhysRevLett.97.131102
[267] Johnstone-Stoney, G., ”On the physical units of nature”, Philos. Mag., 5, 381, (1881). (Cited on page 15.) · doi:10.1080/14786448108627031
[268] Jordan, P., ”Die physikalischen Weltkonstanten”, Die Naturwissenschaften, 25, 513–517, (1937). [DOI]. (Cited on pages 7 and 85.) · Zbl 0017.04202 · doi:10.1007/BF01498368
[269] Kaluza, T., ”Zum Unitäatsproblem in der Physik”, Sitzungsber. Preuss. Akad. Wiss., 1921, 966–972, (1921). (Cited on page 89.) · JFM 48.1032.03
[270] Kane, G.L., Perry, M.J. and Zytkow, A.N., ”The beginning of the end of the anthropic principle”, New Astronomy, 7, 45–53, (2002). [DOI]. (Cited on page 110.) · doi:10.1016/S1384-1076(01)00088-4
[271] Kanekar, N., ”Probing fundamental constant evolution with radio spectroscopy”, Mem. Soc. Astron. Ital., 80, 895, (2009). [ADS]. (Cited on page 44.)
[272] Kanekar, N. and Chengalur, J.N., ”The use of OH’ main’ lines to constrain the variation of fundamental constants”, Mon. Not. R. Astron. Soc., 350, L17, (2004). [DOI], [astro-ph/0310765]. (Cited on page 53.) · doi:10.1111/j.1365-2966.2004.07828.x
[273] Kanekar, N., Chengalur, J.N. and Ghosh, T., ”Probing fundamental constant evolution with redshifted conjugate-satellite OH lines”, Astrophys. J., 716, L23, (2010). [DOI], [arXiv:1004.5383 [astro-ph.CO]]. (Cited on pages 54 and 59.) · doi:10.1088/2041-8205/716/1/L23
[274] Kanekar, N., Prochaska, J.X., Ellison, S.L. and Chengalur, J.N., ”Probing fundamental constant evolution with neutral atomic gas lines”, Astrophys. J., 712, 148, (2010). [arXiv:1003.0444 [astro-ph.CO]]. (Cited on page 52.) · doi:10.1088/2041-8205/712/2/L148
[275] Kanekar, N., Subrahmanyan, R., Ellison, S.L., Lane, W.M. and Chengalur, J.N., ”HI 21 cm absorption at z 2.347 towards PKS B0438-436”, Mon. Not. R. Astron. Soc., 370, L46–L50, (2006). [DOI], [astro-ph/0605346]. (Cited on page 52.) · doi:10.1111/j.1745-3933.2006.00186.x
[276] Kanekar, N. et al., ”Constraints on changes in fundamental constants from a cosmologically distant OH absorber/emitter”, Phys. Rev. Lett., 95, 261301, (2005). [DOI], [astro-ph/0510760]. (Cited on pages 54 and 59.) · doi:10.1103/PhysRevLett.95.261301
[277] Kaplinghat, M., Scherrer, R.J. and Turner, M.S., ”Constraining variations in the fine-structure constant with the cosmic microwave background”, Phys. Rev. D, 60, 023516, (1999). [DOI], [astro-ph/9810133]. (Cited on page 65.) · doi:10.1103/PhysRevD.60.023516
[278] Karshenboim, S.G., ”Fundamental physical constants: looking from different angles”, Can. J. Phys., 83, 767, (2005). [DOI], [physics/0506173]. (Cited on pages 8, 13, and 14.) · doi:10.1139/p05-047
[279] Karshenboim, S.G., ”On a natural definition of the kilogram and the ampere: the objectives and consequences”, e-print, (2005). [physics/0507200]. (Cited on page 15.)
[280] Karshenboim, S.G., ”Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants”, Phys. Rep., 422, 1, (2005). [DOI], [hep-ph/0509010]. (Cited on pages 13 and 28.) · doi:10.1016/j.physrep.2005.08.008
[281] Karshenboim, S.G., ”The search for possible variation of the fine structure constant”, Gen. Relativ. Gravit., 38, 159, (2006). [DOI], [physics/0311080]. (Cited on page 8.) · Zbl 1087.81520 · doi:10.1007/s10714-005-0215-8
[282] Kaspi, V.M., Taylor, J.H. and Riba, M.F., ”High-precision timing of millisecond pulsars. III. Long-term monitoring of PSRs B1855+09 and B1937+21”, Astrophys. J., 428, 713–728, (1994). [DOI], [ADS]. (Cited on page 78.) · doi:10.1086/174280
[283] Ketchum, J.A. and Adams, F.C., ”The future evolution of white dwarf stars through baryon decay and time varying gravitational constant”, Astrophys. Space Sci., 317(3–4), 221–230, (2008). [DOI], [arXiv:0808.1301 [astro-ph]]. (Cited on page 80.) · doi:10.1007/s10509-008-9878-4
[284] Khatri, R. and Wandelt, B., ”21-cm Radiation: A New Probe of Variation in the Fine-Structure Constant”, Phys. Rev. Lett., 98, 111201, (2007). [DOI], [astro-ph/0701752]. (Cited on pages 66, 67, and 68.) · doi:10.1103/PhysRevLett.98.111301
[285] Khatri, R. and Wandelt, B.D., ”21cm radiation: a new probe of fundamental physics”, Mem. Soc. Astron. Ital., 80, 824, (2009). [arXiv:0910.2710 [astro-ph.CO]]. (Cited on page 67.)
[286] Khatri, R. and Wandelt, B.D., ”Reply”, Phys. Rev. Lett., 105, 039002, (2010). [DOI], [arXiv:1007.1963 [astro-ph.CO]]. (Cited on page 68.) · doi:10.1103/PhysRevLett.105.039002
[287] Khoury, J. and Weltman, A., ”Chameleon cosmology”, Phys. Rev. D, 69, 044026, (2004). [DOI], [astro-ph/0309300]. (Cited on pages 87 and 99.) · doi:10.1103/PhysRevD.69.044026
[288] Khoury, J. and Weltman, A., ”Chameleon Fields: Awaiting Surprises for Tests of Gravity in Space”, Phys. Rev. Lett., 93, 171104, (2004). [DOI], [astro-ph/0309411]. (Cited on page 99.) · doi:10.1103/PhysRevLett.93.171104
[289] King, J.A., Webb, J.K., Murphy, M.T. and Carswell, R.F., ”Stringent null constraint on cosmological evolution of the proton-to-electron mass ratio”, Phys. Rev. Lett., 101, 251304, (2008). [DOI], [arXiv:0807.4366 [astro-ph]]. (Cited on pages 56 and 59.) · doi:10.1103/PhysRevLett.101.251304
[290] Kiritsis, E., ”Supergravity, D-brane probes and thermal super Yang-Mills: A comparison”, J. High Energy Phys., 1999(10), 010, (1999). [DOI], [arXiv:hep-th/9906206]. (Cited on page 91.) · Zbl 0957.81036 · doi:10.1088/1126-6708/1999/10/010
[291] Klein, O., ”Quantum Theory and Five-Dimensional Relativity Theory”, Z. Phys., 37, 894–906, (1926). [DOI]. Reprinted in Surveys High Energ. Phys., 5, 241–244, (1986). (Cited on page 89.) · JFM 52.0970.09 · doi:10.1007/BF01397481
[292] Kneller, J.P. and Steigman, G., ”Big bang nucleosynthesis and CMB constraints on dark energy”, Phys. Rev. D, 67, 063501, (2003). [DOI]. (Cited on page 83.) · doi:10.1103/PhysRevD.67.063501
[293] Kofman, L., ”Probing String Theory with Modulated Cosmological Fluctuations”, e-print, (2003). [astro-ph/0303614]. (Cited on page 107.)
[294] Kofman, L., Bernardeau, F. and Uzan, J.-P., ”Modulated fluctuations from hybrid inflation”, Phys. Rev. D, 70, 083004, (2004). [astro-ph/0403315]. (Cited on page 107.) · doi:10.1103/PhysRevD.70.085015
[295] Kolb, E.W., Perry, M.J. and Walker, T.P., ”Time variation of fundamental constants, primordial nucleosynthesis and the size of extra dimensions”, Phys. Rev. D, 33, 869, (1986). [DOI]. (Cited on pages 70, 84, and 89.) · doi:10.1103/PhysRevD.33.869
[296] Komatsu, E. et al. (WMAP Collaboration), ”Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation”, Astrophys. J. Suppl. Ser., 180, 330–376, (2009). [DOI], [arXiv:0803.0547 [astro-ph]]. (Cited on pages 24 and 69.) · doi:10.1088/0067-0049/180/2/330
[297] Korennov, S. and Descouvemont, P., ”A microscopic three-cluster model in the hyperspherical formalism”, Nucl. Phys. A, 740, 249, (2004). [DOI]. (Cited on page 62.) · doi:10.1016/j.nuclphysa.2004.05.013
[298] Kostelecký, V.A., Lehnert, R. and Perry, M.J., ”Spacetime-varying couplings and Lorentz violation”, Phys. Rev. D, 68, 123511, (2003). [DOI], [arXiv:astro-ph/0212003]. (Cited on page 22.) · doi:10.1103/PhysRevD.68.123511
[299] Kozlov, M.G., Lapinov, A.V. and Levshakov, S.A., ”Sensitivity of microwave and FIR spectra to variation of fundamental constants”, Mem. Soc. Astron. Ital., 80, 901–904, (2009). [arXiv:0910.4799]. (Cited on page 54.)
[300] Kozlov, M.G., Porsev, S.G., Levshakov, S.A., Reimers, D. and Molaro, P., ”Mid- and far-infrared fine-structure line sensitivities to hypothetical variability of the fine-structure constant”, Phys. Rev. A, 77, 032119, (2008). [DOI], [arXiv:0802.0269 [astro-ph]]. (Cited on page 54.) · doi:10.1103/PhysRevA.77.032119
[301] Kraiselburd, L. and Vucetich, H., ”Violation of the weak equivalence principle in Bekenstein’s theory”, Int. J. Mod. Phys. E, 20, 101–111, (2011). [DOI], [arXiv:0902.4146 [gr-qc]]. (Cited on page 100.) · doi:10.1142/S0218301311017351
[302] Krastev, P.G. and Li, A.-A., ”Constraining a possible time variation of the gravitational constant G with terrestrial nuclear laboratory data”, Phys. Rev. C, 76, 055804, (2007). [DOI], [nucl-th/0702080]. (Cited on page 79.) · doi:10.1103/PhysRevC.76.055804
[303] Kuroda, P.K., ”On the nuclear physical stability of uranium mineral”, J. Chem. Phys., 25, 781, (1956). [DOI]. (Cited on page 34.) · doi:10.1063/1.1743058
[304] Lamoreaux, S.K., Jacobs, J.P., Heckel, B.R., Raab, F.J. and Fortson, E.N., ”New limits on spatial anisotropy from optically-pumped 201Hg and 199Hg”, Phys. Rev. Lett., 57, 3125–3128, (1986). [DOI]. (Cited on page 18.) · doi:10.1103/PhysRevLett.57.3125
[305] Lamoreaux, S.K. and Togerson, J.R., ”Neutron moderation in the Oklo natural reactor and the time variation of {\(\alpha\)}”, Phys. Rev. D, 69, 12170, (2004). [DOI], [nucl-th/0309048]. (Cited on pages 37 and 38.) · doi:10.1103/PhysRevD.69.121701
[306] Landau, S.J., Bersten, M., Sisterna, P. and Vucetich, H., ”Testing a String Dilaton Model with Experimental and Observational Data”, in Grece, S.A., ed., New Developments in String Theory Research, pp. 153–173, (Nova Science, New York, 2006). [astro-ph/0410030], [Google Books]. (Cited on page 97.)
[307] Landau, S.J., Harari, D.D. and Zaldarriaga, M., ”Constraining non-standard recombination: A worked example”, Phys. Rev. D, 63, 083505, (2001). [DOI], [astro-ph/0010415]. (Cited on pages 65 and 67.) · doi:10.1103/PhysRevD.63.083505
[308] Landau, S.J., Mosquera, M.E., Scoccola, C.G. and Vucetich, H., ”Early Universe Constraints on Time Variation of Fundamental Constants”, Phys. Rev. D, 78, 083527, (2008). [DOI], [arXiv:0809.2033 [astro-ph]]. (Cited on page 70.) · doi:10.1103/PhysRevD.78.083527
[309] Landau, S.J., Mosquera, M.E. and Vucetich, H., ”Primordial nucleosynthesis with varying of fundamental constants: a semi-analytical approach”, Astrophys. J., 637, 38, (2006). [DOI],[astro-ph/0411150]. (Cited on page 71.) · doi:10.1086/431417
[310] Landau, S.J. and Scóccola, C.G., ”Constraints · doi:10.1051/0004-6361/201014215
[311] Landau, S.J. and Vucetich, H., ”Testing theories that predict time variation of fundamental constants”, Astrophys. J., 570, 463, (2002). [DOI], [astro-ph/0005316]. (Cited on page 89.) · doi:10.1086/339775
[312] Langacker, P., ”Time variation of fundamental constants as a probe of new physics”, Int. J. Mod. Phys. A, 19S1, 157–166, (2004). [DOI], [hep-ph/0304093]. (Cited on page 93.) · doi:10.1142/S0217751X04018671
[313] Langacker, P., Segre, G. and Strassler, M.J., ”Implications of Gauge Unification for Time Variation of the Fine Structure Constant”, Phys. Lett. B, 528, 121, (2002). [hep-ph/0112233]. (Cited on page 93.) · doi:10.1016/S0370-2693(02)01189-9
[314] Lee, D.-S., Lee, W. and Ng, K.-W., ”Bound on the time variation of the fine structure constant driven by quintessence”, Int. J. Mod. Phys. D, 14, 335, (2005). [astro-ph/0309316]. (Cited on pages 24 and 102.) · Zbl 1071.83569 · doi:10.1142/S021827180500589X
[315] Lee, S., ”Time variation of fine structure constant and proton-electron mass ratio with quintessence”, Mod. Phys. Lett. A, 22, 2003, (2007). [DOI], [astro-ph/0702063]. (Cited on pages 24 and 102.) · doi:10.1142/S0217732307025236
[316] Leinweber, D.B., Lu, D.H. and Thomas, A.W., ”Nucleon magnetic moments beyond the perturbative chiral regime”, Phys. Rev. D, 60, 034014, (1999). [DOI], [hep-lat/981005]. (Cited on pages 95 and 96.) · doi:10.1103/PhysRevD.60.034014
[317] Leslie, J., Universes, (Routledge, London; New York, 1989). [Google Books]. (Cited on page 110.)
[318] Levshakov, S.A., ”Astrophysical Constraints on Hypothetical Variability of Fundamental Constants”, in Karshenboim, S.G. and Peik, E., eds., Astrophysics, Clocks and Fundamental Constants, 302nd WE-Heraeus-Seminar, Bad Honnef, Germany, June 2003, Lecture Notes in Physics, 648, pp. 151–166, (Springer, Berlin, 2004). [DOI], [astro-ph/0309817]. (Cited on page 47.)
[319] Levshakov, S.A., Agafonova, I.I., Molaro, P. and Reimers, D., ”Spatial and temporal variations of fundamental constants”, Mem. Soc. Astron. Ital., 80, 850–858, (2009). [ADS]. (Cited on page 105.)
[320] Levshakov, S.A., Centurión, M., Molaro, P. and D’Odorico, S. etal, ”Most precise single redshift bound to {\(\Delta\)}{\(\alpha\)}/{\(\alpha\)}”, Astrophys. J., 637, 38, (2006). [DOI], [astro-ph/0511765]. (Cited on page 51.) · doi:10.1086/431417
[321] Levshakov, S.A., Centurion, M., Molaro, P. and Kostina, M.V., ”VLT/UVES constraints on the carbon isotope ratio 12C/13C at z = 1.15 toward the quasar HE 0515-4414”, Astron. Astrophys., 447, L21, (2006). [DOI], [astro-ph/0602303]. (Cited on page 49.) · doi:10.1051/0004-6361:200600001
[322] Levshakov, S.A., Lapinov, A.V., Henkel, C., Molaro, P., Reimers, D., Kozlov, M.G. and Agafonova, ”Searching for chameleon-like scalar fields with the ammonia method II. Mapping of cold molecular cores in NH3 and HC3N lines”, Astron. Astrophys., 524, A32, (2010). [DOI], [arXiv:1008.1160 [astro-ph.CO]]. (Cited on pages 99 and 105.) · doi:10.1051/0004-6361/201015332
[323] Levshakov, S.A., Molaro, P. and Kozlov, M.G., ”On spatial variations of the electron-to-proton mass ratio in the Milky Way”, arXiv, e-print, (2008). [arXiv:0808.0583 [astro-ph]]. (Cited on pages 57, 99, and 105.)
[324] Levshakov, S.A., Molaro, P., Lapinov, A.V., Reimers, D., Henkel, C. and Sakai, T., ”Searching for chameleon-like scalar fields with the ammonia method”, Astron. Astrophys., 512, A44, (2010). [DOI], [arXiv:0911.3732 [astro-ph.CO]]. (Cited on pages 99 and 105.) · doi:10.1051/0004-6361/200913007
[325] Levshakov, S.A., Molaro, P., Lopez, S., D’Odorico, S., Centurión, M., Bonifacio, P., Agafonova, I.I. and Reimers, D., ”A new measure of {\(\Delta\)}{\(\alpha\)}/{\(\alpha\)} at redshift z = 1.84 from very high resolution spectra of Q 1101-264”, Astron. Astrophys., 466, 1077–1082, (2007). [DOI], [astro-ph/0703042]. (Cited on page 51.) · doi:10.1051/0004-6361:20066064
[326] Levshakov, S.A., Molaro, P. and Reimers, D., ”Searching for spatial variations of {\(\alpha\)}2/{\(\mu\)} in the Milky Way”, Astron. Astrophys., 516, A113, (2010). [DOI], [arXiv:1004.0783 [astro-ph.CO]]. (Cited on page 105.) · doi:10.1051/0004-6361/200913558
[327] Levshakov, S.A., Reimers, D., Kozlov, M.G., Porsev, S.G. and Molaro, P., ”A new approach for testing variations of fundamental constants over cosmic epochs using FIR fine-structure lines”, Astron. Astrophys., 479, 719, (2008). [DOI], [arXiv:0712.2890 [astro-ph]]. (Cited on page 59.) · doi:10.1051/0004-6361:20079116
[328] Lévy-Leblond, J.-M., ”The importance of being (a) Constant”, in Toraldo di Francia, G., ed., Problems in the Foundations of Physics, Proceedings of the International School of Physics ’Enrico Fermi’ Course LXXII, Varenna, Italy, July 25–August 6, 1977, pp. 237–263, (North-Holland, Amsterdam; New York, 1979). (Cited on page 11.)
[329] Lewis, A. and Challinor, A., ”The 21 cm angular-power spectrum from dark ages”, Phys. Rev. D, 76, 083005, (2007). [DOI], [astro-ph/0702600]. (Cited on pages 67 and 68.) · doi:10.1103/PhysRevD.76.083005
[330] Li, B. and Chu, M.C., ”Big bang nucleosynthesis constraints on universal extra dimensions and varying fundamental constants”, Phys. Rev. D, 73, 025004, (2006). [astro-ph/0511013]. (Cited on page 89.) · doi:10.1103/PhysRevD.73.025004
[331] Li, B. and Chu, M.C., ”Big bang nucleosynthesis with an evolving radion in the brane world scenario”, Phys. Rev. D, 73, 023509, (2006). [DOI], [astro-ph/0511642]. (Cited on page 101.) · doi:10.1103/PhysRevD.73.023509
[332] Lichnerowicz, A., Théories Relativistes de la Gravitation et de l’Électromagnétisme: Relativité Générale et Théories Unitaires, (Masson, Paris, 1955). (Cited on page 100.)
[333] Lindner, M., Leich, D.A., Borg, R.J., Russ, G.P., Bazan, J.M., Simons, D.S. and Date, A.R., ”Direct laboratory determination of the 187Re half-life”, Nature, 320, 246–248, (1986). [DOI]. (Cited on page 43.) · doi:10.1038/320246a0
[334] Livio, M., Hollowell, D., Weiss, A. and Truran, J.W., ”On the anthropic significance of the existence of an excited state of 12C”, Nature, 340, 281–284, (1989). [DOI]. (Cited on page 62.) · doi:10.1038/340281a0
[335] Lopes, I. and Silk, J., ”The implications for helioseismology of experimental uncertainties in Newton’s constant”, e-print, (2001). [astro-ph/0112310]. (Cited on page 80.)
[336] Lorén-Aguilar, P., García-Berro, E., Isern, J. and Kubyshin, Y.A., ”Time variation of G and {\(\alpha\)} within models with extra dimensions”, Class. Quantum Grav., 20, 3885–3896, (2003).[DOI], [astro-ph/0309722]. (Cited on pages 89 and 101.) · Zbl 1048.83024 · doi:10.1088/0264-9381/20/18/302
[337] Lugmair, G.W. and Galer, S.J., ”Age and isotopic relationships among the angrite Lewis Cliff 86010 and Angra dos Reis”, Geochim. Cosmochim. Acta, 56, 1673, (1992). [DOI]. (Cited on page 43.) · doi:10.1016/0016-7037(92)90234-A
[338] Ma, C.-P. and Bertschinger, E., ”Cosmological perturbation theory in the synchronous and conformal Newtonian gauge”, Astrophys. J., 455, 7–25, (1995). [DOI], [astro-ph/9506072]. (Cited on page 64.) · doi:10.1086/176550
[339] MacGibbon, J.H., ”Black Hole Constraints on Varying Fundamental Constants”, Phys. Rev. Lett., 99, 061301, (2007). [DOI]. (Cited on page 101.) · doi:10.1103/PhysRevLett.99.061301
[340] Maeda, K.-I., ”On time variation of fundamental constants in superstring theories”, Mod. Phys. Lett. A, 3, 243–249, (1988). [DOI]. (Cited on pages 90 and 91.) · doi:10.1142/S0217732388000295
[341] Magueijo, J., ”New varying speed of light theories”, Rep. Prog. Phys., 66, 2025–2068, (2003). [DOI], [astro-ph/0305457]. (Cited on page 101.) · doi:10.1088/0034-4885/66/11/R04
[342] Malec, A.L. et al., ”New limit on a varying proton-to-electron mass ratio from high-resolution optical quasar spectra”, Mem. Soc. Astron. Ital., 80, 882–887, (2009). [ADS]. (Cited on pages 56 and 59.)
[343] Maleki, L. and Prestage, J., ”Search for New Physics with Atomic Clocks”, in Karshenboim, S.G. and Peik, E., eds., Astrophysics, Clocks and Fundamental Constants, 302nd WE-Heraeus-Seminar, Bad Honnef, Germany, June 2003, Lecture Notes in Physics, 648, pp. 331–341, (Springer, Berlin, 2004). [DOI]. (Cited on page 105.)
[344] Mansfield, V.N., ”Pulsar spin down and cosmologies with varying gravity”, Nature, 261, 560, (1976). [DOI]. (Cited on page 78.) · doi:10.1038/261560a0
[345] Marciano, W.J., ”Time Variation of the Fundamental ’Constants’ and Kaluza-Klein Theories”, Phys. Rev. Lett., 52, 489–491, (1984). [DOI]. (Cited on page 89.) · doi:10.1103/PhysRevLett.52.489
[346] Marion, H. et al., ”A search for variations of fundamental constants using atomic fountain clock”, Phys. Rev. Lett., 90, 150801, (2003). [DOI], [physics/0212112]. (Cited on page 29.) · doi:10.1103/PhysRevLett.90.150801
[347] Marra, V. and Rosati, F., ”Cosmological evolution of alpha driven by a general coupling with quintessence”, J. Cosmol. Astropart. Phys., 2005(05), 011, (2005). [DOI], [astro-ph/0501515]. (Cited on pages 24, 101, and 102.) · doi:10.1088/1475-7516/2005/05/011
[348] Martin, J., Schimd, C. and Uzan, J.-P., ”Testing for w < in the Solar System”, Phys. Rev. Lett., 96, 061303, (2006). [DOI], [astro-ph/0510208]. (Cited on pages 24, 87, and 109.) · doi:10.1103/PhysRevLett.96.061303
[349] Martínez Fiorenzano, A.F., Vladilo, G. and Bonifacio, P., ”Search for {\(\alpha\)} variation in UVES spectra: Analysis of C IV and Si IV doublets towards QSO 1101-264”, Mem. Soc. Astron. Ital., 3, 252–255, (2003). [ADS], [astro-ph/0312270]. (Cited on pages 47 and 59.)
[350] Martins, C.J.A.P., Melchiorri, A., Rocha, G., Trotta, R., Avelino, P.P. and Viana, P.T.P., ”WMAP constraints on varying {\(\alpha\)} and the promise of reionization”, Phys. Lett. B, 585, 29–34, (2004). [DOI], [astro-ph/0302295]. (Cited on page 65.) · doi:10.1016/j.physletb.2003.11.080
[351] Martins, C.J.A.P., Menegoni, E., Galli, S., Mangano, G. and Melchiorri, A., ”Varying couplings in the early universe: correlated variations of {\(\alpha\)} and G”, Phys. Rev. D, 82, 023532, (2010). [DOI], [arXiv:1001.3418 [astro-ph.CO]]. (Cited on page 66.) · doi:10.1103/PhysRevD.82.023532
[352] Menegoni, E., Galli, S., Bartlett, J., Martins, C.J.A.P. and Melchiorri, A., ”New constraints on variations of the fine structure constant from CMB anisotropies”, Phys. Rev. D, 80, 087302, (2009). [DOI], [arXiv:0909.3584 [astro-ph.CO]]. (Cited on pages 66 and 67.) · doi:10.1103/PhysRevD.80.087302
[353] Menten, K.M., Güsten, R., Leurini, S., Thorwirth, S., Henkel, C., Klein, B., Carilli, C.L. and Reid, M.J., ”Submillimeter water and ammonia absorption by the peculiar z 0.89 interstellar medium in the gravitational lens of the PKS 1830-211 system”, Astron. Astrophys., 492, 725–730, (2008). [DOI], [arXiv:0810.2782 [astro-ph]]. (Cited on pages 57 and 59.) · doi:10.1051/0004-6361:200810041
[354] Mercuri, S. and Taveras, V., ”Interaction of the Barbero-Immirzi Field with Matter and Pseudo-Scalar Perturbations”, Phys. Rev. D, 80, 104007, (2009). [DOI], [arXiv:0903.4407 [gr-qc]]. (Cited on page 101.) · doi:10.1103/PhysRevD.80.104007
[355] Mester, J., Torii, R., Worden, P., Lockerbie, N., Vitale, S. and Everitt, C.W.F., ”The STEP mission: principles and baseline design”, Class. Quantum Grav., 18, 2475–2486, (2001). [DOI]. (Cited on page 19.) · Zbl 0992.83506 · doi:10.1088/0264-9381/18/13/310
[356] Mohr, P.J., Taylor, B.N. and Newell, D.B., ”CODATA Recommended Values of the Fundamental Physical Constants: 2006”, Rev. Mod. Phys., 80, 633, (2008). [DOI], [arXiv:0801.0028 [physics.atom-ph]]. (Cited on page 8.) · Zbl 1205.83014 · doi:10.1103/RevModPhys.80.633
[357] Molaro, P., ”Newspectrographs for the VLT and E-ELT suited for the measurements of fundamental constant variability”, Mem. Soc. Astron. Ital., 80, 912, (2009). (Cited on page 60.)
[358] Molaro, P., Levshakov, S.A. and Kozlov, M.G., ”Stringent bounds to spatial variations of the electron-to-proton mass ratio in the Milky Way”, Nucl. Phys. B (Proc. Suppl.), 194, 287–293, (2009). [DOI], [arXiv:0907.1192 [astro-ph.CO]]. (Cited on page 105.) · doi:10.1016/j.nuclphysbps.2009.07.032
[359] Molaro, P., Levshakov, S.A., Monai, S., Centurion, M., Bonifacio, P., D’Odorico, S. and Monaco, L., ”UVES radial velocity accuracy from asteroid observations. Implications for the fine structure constant variability”, Astron. Astrophys., 481, 559, (2008). [arXiv:0712.3345 [astro-ph]]. (Cited on page 51.) · doi:10.1051/0004-6361:20078864
[360] Molaro, P., Murphy, M.T. and Levshakov, S.A., ”Exploring variations in the fundamental constants with ELTs: The CODEX spectrograph on OWL”, in Whitelock, P.A., Dennefeld, M. and Leibundgut, B., eds., The Scientific Requirements for Extremely Large Telescopes, Proceedings of IAU Symposium 232, Cape Town, South Africa, November 14–18, 2005, IAU Symposia, 232, pp. 198–203, (Cambridge University Press, Cambridge; New York, 2006). [astro-ph/0601264]. (Cited on page 60.)
[361] Molaro, P., Reimers, D., Agafonova, I.I. and Levshakov, S.A., ”Bounds on the fine structure constant variability from Fe II absorption lines in QSO spectra”, Eur. Phys. J. Special Topics, 163, 173–189, (2008). [DOI], [arXiv:0712.4380 [astro-ph]]. (Cited on pages 50, 51, and 59.) · doi:10.1140/epjst/e2008-00818-4
[362] Moss, A., Scott, D., Zibin, J.P. and Battye, R., ”Tilted Physics: A Cosmologically Dipole-Modulated Sky”, arXiv, e-print, (2010). [arXiv:1011.2990 [astro-ph.CO]]. (Cited on page 107.)
[363] Mota, D.F. and Barrow, J.D., ”Local and global variations of the fine structure constant”, Mon. Not. R. Astron. Soc., 349, 291, (2004). [DOI], [astro-ph/0309273]. (Cited on page 106.) · doi:10.1111/j.1365-2966.2004.07505.x
[364] Müller, C.M., Schäfer, G. and Wetterich, C., ”Nucleosynthesis and the variation of fundamental couplings”, Phys. Rev. D, 70, 083504, (2004). [DOI], [astro-ph/0405373]. (Cited on pages 71, 73, 74, and 94.) · doi:10.1103/PhysRevD.70.083504
[365] Müller, J., Schneider, M., Soffel, M. and Ruder, H., ”Testing Einstein’s theory of gravity by analyzing Lunar Laser Ranging data”, Astrophys. J., 382, L101, (1991). [DOI]. (Cited on pages 19 and 77.) · Zbl 0850.83007 · doi:10.1086/186222
[366] Murphy, M.T., Flambaum, V.V., Muller, S. and Henkel, C., ”Strong limit on a variable proton-to-electron mass ratio from molecules in the distant universe”, Science, 320, 1611, (2008). [DOI], [arXiv:0806.3081 [astro-ph]]. (Cited on pages 57 and 59.) · doi:10.1126/science.1156352
[367] Murphy, M.T., Flambaum, V.V., Webb, J.K., Dzuba, V.V., Prochaska, J.X. and Wolfe, A.M., ”Constraining Variations in the Fine-structure Constant, Quark Masses and the Strong Interaction”, in Karshenboim, S.G. and Peik, E., eds., Astrophysics, Clocks and Fundamental Constants, 302nd WE-Heraeus-Seminar, Bad Honnef, Germany, June 2003, Lecture Notes in Physics, 648, pp. 131–150, (Springer, Berlin, 2004). [DOI], [astro-ph/0310318]. (Cited on pages 45, 48, 50, 51, and 59.)
[368] Murphy, M.T., Tzanavaris, P., Webb, J.K. and Lovis, C., ”Selection of ThAr lines for wavelength calibration of echelle spectra and implications for variations in the fine-structure constant”, Mon. Not. R. Astron. Soc., 378, 221, (2007). [DOI], [astro-ph/0703623]. (Cited on pages 48 and 49.) · doi:10.1111/j.1365-2966.2007.11768.x
[369] Murphy, M.T., Webb, J.K. and Flambaum, V.V., ”Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra”, Mon. Not. R. Astron. Soc., 345, 609, (2003). [DOI], [astro-ph/0306483]. (Cited on page 48.) · doi:10.1046/j.1365-8711.2003.06970.x
[370] Murphy, M.T., Webb, J.K. and Flambaum, V.V., ”Comment on ’Limits on the time variation of the electromagnetic fine-structure constant in the low energy Limit from absorption lines in the spectra of distant quasars”’, Phys. Rev. Lett., 99, 239001, (2007). [DOI], [arXiv:0708.3677 [astro-ph]]. (Cited on page 50.) · doi:10.1103/PhysRevLett.99.239001
[371] Murphy, M.T., Webb, J.K. and Flambaum, V.V., ”Revision of VLT/UVES constraints on a varying fine-structure constant”, Mon. Not. R. Astron. Soc., 384, 1053, (2008). [DOI], [astro-ph/0612407]. (Cited on page 50.) · doi:10.1111/j.1365-2966.2007.12695.x
[372] Murphy, M.T., Webb, J.K. and Flambaum, V.V., ”Revisiting VLT/UVES constraints on a varying fine-structure constant”, in Santos, N.C., Pasquini, L., Correia, A.C.M. and Romaniello, M., eds., Precision Spectroscopy in Astrophysics, Proceedings of the ESO/Lisbon/Aveiro Conference held in Aveiro, Portugal, 11–15 September 2006, ESO Astrophysics Symposia, pp. 95–100, (Springer, Berlin, 2008). [astro-ph/0611080]. (Cited on page 50.)
[373] Murphy, M.T., Webb, J.K. and Flambaum, V.V., ”Keck constraints on a varying fine-structure constant: wavelength calibration erros”, Mem. Soc. Astron. Ital., 80, 833, (2009). [arXiv:0911.4512 [astro-ph.CO]]. (Cited on page 50.)
[374] Murphy, M.T., Webb, J.K., Flambaum, V.V., Churchill, C.W. and Prochaska, J.X., ”Possible evidence for a variable fine-structure constant from QSO absorption lines: systematic errors”, Mon. Not. R. Astron. Soc., 327, 1223–1236, (2001). [DOI], [astro-ph/0012420]. (Cited on pages 48 and 49.) · doi:10.1046/j.1365-8711.2001.04841.x
[375] Murphy, M.T., Webb, J.K., Flambaum, V.V., Drinkwater, M.J., Combes, F. and Wiklind, T., ”Improved constraints on possible variation of physical constants from H I 21cm and molecular QSO absorption lines”, Mon. Not. R. Astron. Soc., 327, 1244–1248, (2001). [DOI], [astro-ph/0101519]. (Cited on pages 53 and 59.) · doi:10.1046/j.1365-8711.2001.04843.x
[376] Murphy, M.T., Webb, J.K., Flambaum, V.V., Dzuba, V.A., Churchill, C.W., Prochaska, J.X., Barrow, J.D. and Wolfe, A.M., ”Possible evidence for a variable fine-structure constant from QSO absorption lines: motivations, analysis and results”, Mon. Not. R. Astron. Soc., 327, 1208–1222, (2001). [DOI], [astro-ph/0012419]. (Cited on pages 48 and 49.) · doi:10.1046/j.1365-8711.2001.04840.x
[377] Murphy, M.T., Webb, J.K., Flambaum, V.V., Prochaska, J.X. and Wolfe, A.M., ”Further constraints on variation of the fine-structure constant from alkali-doublet QSO absorption lines”, Mon. Not. R. Astron. Soc., 327, 1237–1243, (2001). [DOI], [astro-ph/0012421]. (Cited on pages 47, 59, and 106.) · doi:10.1046/j.1365-8711.2001.04842.x
[378] Nagata, R., Chiba, T. and Sugiyama, N., ”WMAP constraints on scalar-tensor cosmology and the variation of the gravitational constant”, Phys. Rev. D, 69, 083512, (2004). [DOI]. (Cited on page 83.) · doi:10.1103/PhysRevD.69.083512
[379] Nakamura, K. et al. (Particle Data Group), ”Review of particle physics”, J. Phys. G: Nucl. Part. Phys., 37, 075021, (2010). [DOI]. (Cited on pages 5, 10, 12, and 29.) · doi:10.1088/0954-3899/37/7A/075021
[380] Nakashima, M., Ichikawa, K., Nagata, R. and Yokoyama, J., ”Constraining the time variation of the coupling constants from cosmic microwave background: effect of Aqcd”, J. Cosmol. Astropart. Phys., 2010(01), 030, (2010). [DOI], [arXiv:0810.1098 [astro-ph]]. (Cited on pages 66 and 67.) · doi:10.1088/1475-7516/2010/01/030
[381] Nakashima, M., Nagata, R. and Yokoyama, J., ”Constraints on the time variation of the fine structure constant by the 5yr WMAP data”, Prog. Theor. Phys., 120, 1207, (2008). [DOI], [arXiv:0810.1098 [astro-ph]]. (Cited on pages 66 and 67.) · doi:10.1143/PTP.120.1207
[382] Naudet, R., Oklo, des réacteurs nucléaires fossiles: étude physique, Série Synthèses, (CEA/Eyrolles, Paris, 2000). (Cited on pages 34 and 36.)
[383] Neal, R.M., Puzzles of Anthropic Reasoning Resolved Using Full Non-indexical Conditioning, Technical Reports, 0607, (University of Toronto, Toronto, 2006). [math/0608592]. Online version (accessed 21 March 2011): http://www.utstat.utoronto.ca/pagecontent/index.php?pageid=18. (Cited on pages 111 and 113.)
[384] Nguyen, A.T., Budker, D., Lamoreaux, S.K. and Torgerson, J.R., ”Towards a sensitive search for variation of the fine-structure constant using radio-frequency E1 transitions in atomic dyprosium”, Phys. Rev. A, 69, 022105, (2004). [DOI], [physics/0308104]. (Cited on page 31.) · doi:10.1103/PhysRevA.69.022105
[385] Nollet, K.M. and Lopez, R.E., ”Primordial nucleosynthesis with a varying fine structure constant: an improved estimate”, Phys. Rev. D, 66, 063507, (2002). [DOI], [astro-ph/0204325]. (Cited on page 71.) · doi:10.1103/PhysRevD.66.063507
[386] Nordtvedt, K., ”\.G/G and a cosmological acceleration of gravitationally compact bodies”, Phys. Rev. Lett., 65, 953–956, (1990). [DOI]. (Cited on pages 21, 77, and 78.) · doi:10.1103/PhysRevLett.65.953
[387] Noterdaeme, P., Petitjean, P., Srianand, R., Ledoux, C. and Le Petit, F., ”Physical conditions in the neutral interstellar medium at z = 2.43 toward Q2348-011”, Astron. Astrophys., 469, 425–436, (2007). [DOI], [astro-ph/0703218]. (Cited on pages 55 and 57.) · doi:10.1051/0004-6361:20066897
[388] Novikov, I.D. and Zel’dovich, Y.B., Relativistic Astrophysics: The structure and evolution of the universe, 2, (University of Chicago Press, Chicago, 1983). (Cited on page 17.)
[389] Nunes, N.J., Dent, T., Avelino, C.J.A.P. and Robbers, G., ”Reconstructing the evolution of dark energy with variations of fundamental parameters”, Mem. Soc. Astron. Ital., 80, 785, (2009). [arXiv:0910.4935 [astro-ph.CO]]. (Cited on pages 25 and 102.)
[390] Oberhummer, H., Csótó, A. and Schlattl, H., ”Stellar production rates of carbon and its abundance in the universe”, Science, 289, 88–90, (2000). [DOI], [astro-ph/0007178]. (Cited on page 62.) · doi:10.1126/science.289.5476.88
[391] Oberhummer, H., Csótó, A. and Schlattl, H., ”Bringing the mass gaps at A = 5 and A = 8 in nucleosynthesis”, Nucl. Phys. A, 689, 269–279, (2001). [DOI], [nucl-th/0009046]. (Cited on page 62.) · doi:10.1016/S0375-9474(01)00841-7
[392] Okun, L.B., ”The fundamental constants of physics”, Sov. Phys. Usp., 34, 818–826, (1991). [DOI]. (Cited on page 16.) · doi:10.1070/PU1991v034n09ABEH002475
[393] Okun, L.B., ”Fundamental Constants of Nature”, e-print, (1996). [hep-ph/9612249]. (Cited on page 9.)
[394] Olive, K.A., ”The effects of coupling variations on BBN”, Mem. Soc. Astron. Ital., 80, 802, (2009). (Cited on page 73.)
[395] Olive, K.A., ”Variable constants – A theoretical overview”, Mem. Soc. Astron. Ital., 80, 754, (2009). (Cited on page 8.)
[396] Olive, K.A., Peloso, M. and Uzan, J.-P., ”The Wall of Fundamental Constants”, Phys. Rev. D, 83, 043509, (2011). [DOI], [arXiv:1011.1504 [astro-ph.CO]]. (Cited on page 107.) · doi:10.1103/PhysRevD.83.043509
[397] Olive, K.A. and Pospelov, M., ”Evolution of the Fine Structure Constant Driven by Dark Matter and the Cosmological Constant”, Phys. Rev. D, 65, 085044, (2002). [DOI], [hep-ph/0110377]. (Cited on page 100.) · doi:10.1103/PhysRevD.65.085044
[398] Olive, K.A. and Pospelov, M., ”Environmental dependence of masses and coupling constants”, Phys. Rev. D, 77, 043524, (2008). [DOI], [arXiv:0709.3825 [hep-ph]]. (Cited on page 99.) · doi:10.1103/PhysRevD.77.043524
[399] Olive, K.A., Pospelov, M., Qian, Y.-Z., Coc, A., Cassé, M. and Vangioni-Flam, E., ”Constraints on the variation of the fundamental couplings”, Phys. Rev. D, 66, 045022, (2002). [DOI], [hep-ph/0205269]. (Cited on pages 39, 42, 43, and 44.) · doi:10.1103/PhysRevD.66.045022
[400] Olive, K.A., Pospelov, M., Qian, Y.-Z., Manhès, G., Vangioni-Flam, E., Coc, A. and Cassé, M., ”Reexamination of the 187Re bound on the variation of fundamental couplings”, Phys. Rev. D, 69, 027701, (2004). [DOI], [astro-ph/0309252]. (Cited on page 44.) · doi:10.1103/PhysRevD.69.027701
[401] Olive, K.A. and Skillman, E.D., ”A Realistic Determination of the Error on the Primordial Helium Abundance: Steps Toward Non-Parametric Nebular Helium Abundances”, Astrophys. J., 617, 29, (2004). [DOI], [astro-ph/0405588]. (Cited on page 84.) · doi:10.1086/425170
[402] Page, D.N., ”Predictions and tests of multiverse theories”, in Carr, B.J., ed., Universe or Multiverse?, pp. 411–430, (Cambridge University Press, Cambridge; New York, 2007). [hep-th/0610101]. (Cited on page 113.) · Zbl 1153.83034
[403] Palma, G.A., Brax, P., Davis, A.C. and van de Bruck, C., ”Gauge coupling variation in brane models”, Phys. Rev. D, 68, 123519, (2003). [DOI], [astro-ph/0306279]. (Cited on page 101.) · doi:10.1103/PhysRevD.68.123519
[404] Parkinson, D., Bassett, B.A. and Barrow, J.D., ”Mapping the dark energy with varying alpha”, Phys. Lett. B, 578, 235, (2004). [astro-ph/0307227]. (Cited on pages 24, 25, and 102.) · doi:10.1016/j.physletb.2003.10.081
[405] Peebles, P.J.E., ”Recombination of the primeval plasma”, Astrophys. J., 153, 1–11, (1968). [DOI]. (Cited on page 64.) · doi:10.1086/149628
[406] Peebles, P.J. and Dicke, R.H., ”Cosmology and the Radioactive Decay Ages of Terrestrial Rocks and Meteorites”, Phys. Rev., 128, 2006–2011, (1962). [DOI]. (Cited on page 43.) · doi:10.1103/PhysRev.128.2006
[407] Peik, E., Lipphardt, B., Schnatz, H., Schneider, T. and Tamm, C., ”Limit on the Present Temporal Variation of the Fine Structure Constant”, Phys. Rev. Lett., 93, 170801, (2004). [DOI], [physics/0402132]. (Cited on pages 29 and 31.) · doi:10.1103/PhysRevLett.93.170801
[408] Peik, E., Lipphardt, B., Schnatz, H., Tamm, C., Weyers, S. and Wynands, R., ”Laboratory Limits on Temporal Variations of Fundamental Constants: An Update”, in Kleinert, H., Jantzen, R.T. and Ruffini, R., eds., The Eleventh Marcel Grossmann Meeting on General Relativity, Proceedings of the MG11 Meeting on General Relativity, Berlin, Germany, 23–29 July 2006, pp. 941–951, (World Scientific, Singapore; Hackensack, NJ, 2008). [ physics/0611088]. (Cited on pages 29, 30, and 105.)
[409] Peter, P. and Uzan, J.-P., Primordial Cosmology, (Oxford University Press, Oxford; New York, 2009). (Cited on pages 22, 24, 63, 68, 69, 88, 106, and 117.)
[410] Petitjean, P. and Aracil, B., ”The ratio of the C IV{\(\lambda\)}{\(\lambda\)}1548,1550 rest-wavelengths from high-redshift QSO absorption lines”, Astron. Astrophys., 422, 523–526, (2004). [DOI]. (Cited on page 47.) · doi:10.1051/0004-6361:20041030
[411] Petitjean, P., Noterdaeme, P., Srianand, R., Ledoux, C., Ivanchik, A. and Gupta, N., ”Searching for places where to test the variations of fundamental constants”, Mem. Soc. Astron. Ital., 80, 859–863, (2009). [ADS]. (Cited on pages 52 and 56.)
[412] Petitjean, P., Srianand, R., Chand, H., Ivanchik, A., Noterdaeme, P. and Gupta, N., ”Constraining fundamental constants of physics with quasar absorption line systems”, Space Sci. Rev., 148, 289–300, (2009). [DOI], [arXiv:0905.1516 [astro-ph.CO]]. (Cited on pages 44, 57, and 59.) · doi:10.1007/s11214-009-9520-y
[413] Petley, B.W., ”New definition of the metre”, Nature, 303, 373, (1983). [DOI]. (Cited on page 11.) · doi:10.1038/303373a0
[414] Petley, B.W., The Fundamental Physical Constants and the Frontier of Measurement, (Adam Hilger, Bristol; Philadelphia, 1985). (Cited on page 13.)
[415] Petrov, Y.V., ”The Oklo natural reactor”, Sov. Phys. Usp., 20, 937, (1978). (Cited on pages 37 and 38.) · doi:10.1070/PU1977v020n11ABEH005473
[416] Petrov, Y.V., Nazarov, A.I., Onegin, M.S., Petrov, V.Y. and Sakhnovsky, E.G., ”Natural nuclear reactor at Oklo and variation of fundamental constants: Computation of neutronics of a fresh core”, Phys. Rev. C, 74, 064610, (2006). [DOI], [hep-ph/0506186]. (Cited on pages 37, 38, 39, and 40.) · doi:10.1103/PhysRevC.74.064610
[417] Pitrou, C., Uzan, J.-P. and Bernardeau, F., ”Cosmic microwave background bispectrum on small angular scales”, Phys. Rev. D, 78, 063526, (2008). [DOI], [arXiv:0807.0341 [astro-ph]]. (Cited on page 106.) · doi:10.1103/PhysRevD.78.063526
[418] Planck, M., ”Über irreversible Strahlungsvorgänge”, Ann. Phys. (Berlin), 1, 69, (1900). [DOI]. (Cited on page 16.) · JFM 31.0845.01 · doi:10.1002/andp.19003060105
[419] Planck, M., ”Natural Units”, in The Theory of Heat Radiation, pp. 173–175, (P. Blakiston’s Son & Co., Philadelphia, 1914). [Google Books]. (Cited on page 16.)
[420] Polchinski, J., String Theory. Vol. 2: Superstring theory and beyond, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1998). [Google Books]. (Cited on page 89.) · Zbl 1006.81522
[421] Porsev, S.G., Flambaum, V.V. and Torgerson, J.R., ”Transition frequency shifts with fine-structure constant variation for Yb II”, Phys. Rev. A, 80, 042503, (2009). [DOI], [arXiv:0907.3352 [physics.atom-ph]]. (Cited on page 33.) · doi:10.1103/PhysRevA.80.042503
[422] Prestage, J.D., Bollinger, J.J., Itano, W.M. and Wineland, D.J., ”Limits for Spatial Anisotropy by Use of Nuclear-Spin-Polarized 9Be+ Ions”, Phys. Rev. Lett., 54, 2387–2390, (1985). [DOI]. (Cited on page 18.) · doi:10.1103/PhysRevLett.54.2387
[423] Pretage, J.D., Tjoelker, R.L. and Maleki, L., ”Atomic clocks and variation of the fine structure constant”, Phys. Rev. Lett., 74, 3511–3514, (1995). [DOI]. (Cited on page 28.) · doi:10.1103/PhysRevLett.74.3511
[424] Prunet, S., Uzan, J.-P., Bernardeau, F. and Brunier, T., ”Constraints on mode couplings and modulation of the CMB with WMAP data”, Phys. Rev. D, 71, 083508, (2005). [DOI], [arXiv:astro-ph/0406364]. (Cited on page 107.) · doi:10.1103/PhysRevD.71.083508
[425] Psaltis, D., ”Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum”, Living Rev. Relativity, 11, lrr-2008-9, (2008). [arXiv:0806.1531 [astro-ph]]. URL (accessed 27 September 2010): http://www.livingreviews.org/lrr-2008-9. (Cited on page 20.) · Zbl 1166.85302
[426] Pudliner, B.S., Pandharipande, V.R., Carlson, J. and Pieper, S.C. etal, ”Quantum Monte Carlo calculations of nuclei with A 7”, Phys. Rev. C, 56, 1720, (1997). [DOI], [nucl-th/9705009]. (Cited on pages 74 and 95.) · doi:10.1103/PhysRevC.56.1720
[427] Quast, R., Reimers, D. and Levshakov, S.A., ”Probing the variability of the fine-structure constant with the VLT/UVES”, Astron. Astrophys., 415, L7–L11, (2004). [DOI], [astro-ph/0311280]. (Cited on pages 50 and 51.) · doi:10.1051/0004-6361:20040013
[428] Reasenberg, R.D., ”The constancy of G and other gravitational experiments”, Philos. Trans. R. Soc. London, Ser. A, 310, 227, (1983). (Cited on page 77.) · doi:10.1098/rsta.1983.0083
[429] Reasenberg, R.D. and Shapiro, I.I., ”A radar test of the constancy of the gravitational interaction”, in Halpern, L., ed., On the Measurement of Cosmological Variations of the Gravitational Constant, Workshop meeting held at Florida State University, Tallahassee, November 12–14, 1975, pp. 71–86, (University Presses of Florida, Gainesville, FL, 1978). (Cited on page 77.)
[430] Reasenberg, R.D. et al., ”Viking relativity experiment: Verification of signal retardation by solar gravity”, Astrophys. J. Lett., 234, L219–L221, (1979). [DOI], [ADS]. (Cited on page 77.) · doi:10.1086/183144
[431] Reinhold, E., Buning, R., Hollenstein, U., Ivanchik, A., Petitjean, P. and Ubachs, W., ”Indication of a Cosmological Variation of the Proton-Electron Mass Ratio Based on Laboratory Measurement and Reanalysis of H2 spectra”, Phys. Rev. Lett., 96, 151101, (2006). [DOI]. (Cited on pages 56 and 59.) · doi:10.1103/PhysRevLett.96.151101
[432] Reisenegger, E., Jofrié, P. and Fernandez, R., ”Constraining a possible time-variation of the gravitational constant through ’gravitochemical heating’ of neutron stars”, Mem. Soc. Astron. Ital., 80, 829, (2009). [arXiv:0911.0190 [astro-ph.HE]]. (Cited on page 79.)
[433] Reynaud, S., Salomon, C. and Wolf, P., ”Testing general relativity with atomic clocks”, Space Sci. Rev., 148, 233–247, (2009). [DOI], [arXiv:0903.1166 [quant-ph]]. (Cited on page 34.) · doi:10.1007/s11214-009-9539-0
[434] Riazuelo, A. and Uzan, J.-P., ”Quintessence and gravitational waves”, Phys. Rev. D, 62, 083506, (2000). [DOI]. (Cited on page 23.) · doi:10.1103/PhysRevD.62.083506
[435] Riazuelo, A. and Uzan, J.-P., ”Cosmological observations in scalar-tensor quintessence”, Phys. Rev. D, 66, 023525, (2002). [DOI], [astro-ph/0107386]. (Cited on pages 24, 64, 81, 82, 83, 87, and 106.) · doi:10.1103/PhysRevD.66.023525
[436] Ricci, B. and Villante, F.L., ”The Sun and the Newton Constant”, Phys. Lett. B, 549, 20, (2002). [astro-ph/0204482]. (Cited on page 80.) · doi:10.1016/S0370-2693(02)02866-6
[437] Rich, J., ”Experimental Consequences of Time Variations of the Fundamental Constants”, Am. J. Phys., 71, 1043, (2003). [DOI], [physics/0209016]. (Cited on page 17.) · doi:10.1119/1.1566783
[438] Rocha, G., Trotta, R., Martins, C.J.A.P., Melchiorri, A., Avelino, P.P., Bean, R. and Viana, P.T.P., ”Measuring {\(\alpha\)} in the early universe: CMB polarisation, reionisation and the Fisher matrix analysis”, Mon. Not. R. Astron. Soc., 352, 20–38, (2004). [DOI], [ADS], [astro-ph/0309211]. (Cited on pages 66 and 67.) · doi:10.1111/j.1365-2966.2004.07832.x
[439] Rohlf, J.W., Modern Physics from a to Z0, (Wiley, New York, 1994). (Cited on page 95.)
[440] Rosenband, T. et al., ”Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place”, Science, 319, 1808–1812, (2008). [DOI]. (Cited on pages 29, 31, and 105.) · doi:10.1126/science.1154622
[441] Rothman, T. and Matzner, R., ”Scale-Covariant Gravitation and Primordial Nucleosynthesis”, Astrophys. J., 257, 450, (1982). [DOI]. (Cited on pages 83 and 84.) · doi:10.1086/160003
[442] Rozental, I.L., Big Bang, Big Bounce: How Particles and Fields Drive Cosmic Evolution, (Springer, Berlin, 1988). (Cited on page 111.)
[443] Rubakov, V.A. and Shaposhnikov, M.E., ”A Comment on Dynamical Coupling Constants and the Anthropic Principle”, Mod. Phys. Lett. A, 4, 107–109, (1989). [DOI]. (Cited on page 113.) · doi:10.1142/S0217732389000149
[444] Salomon, C. et al., ”Cold atoms in space and atomic clocks: ACES”, C. R. Acad. Sci., 2, 1313–1330, (2001). [DOI]. (Cited on pages 34 and 105.)
[445] Sandvik, H.B., Barrow, J.D. and Magueijo, J., ”A Simple Cosmology with a Varying Fine Structure Constant”, Phys. Rev. Lett., 88, 031302, (2002). [DOI], [astro-ph/0107512]. (Cited on page 100.) · doi:10.1103/PhysRevLett.88.031302
[446] Santiago, D.I., Kalligas, D. and Wagoner, R.V., ”Nucleosynthesis constraints on scalar-tensor theories of gravity”, Phys. Rev. D, 56, 7627–7637, (1997). [DOI]. (Cited on page 83.) · doi:10.1103/PhysRevD.56.7627
[447] Savedoff, M., ”Physical constants in extra-galactic nebulae”, Nature, 178, 688, (1956). [DOI]. (Cited on page 44.) · doi:10.1038/178688b0
[448] Schiller, S., ”Hydrogenlike highly charged ions tests of the time independence of fundamental constants”, Phys. Rev. Lett., 98, 180801, (2007). [DOI]. (Cited on page 33.) · doi:10.1103/PhysRevLett.98.180801
[449] Schimd, C., Uzan, J.-P. and Riazuelo, A., ”Weak lensing in scalar-tensor theories of gravity”, Phys. Rev. D, 71, 083512, (2005). [DOI], [astro-ph/0412120]. (Cited on page 87.) · doi:10.1103/PhysRevD.71.083512
[450] Schlamminger, S., Choi, K.-Y., Wagner, T.A., Gundlach, J.H. and Adelberger, E.G., ”Test of the Equivalence Principle Using a Rotating Torsion Balance”, Phys. Rev. Lett., 100, 041101, (2008). [DOI]. (Cited on page 19.) · doi:10.1103/PhysRevLett.100.041101
[451] Schlattl, H., Heger, A., Oberhummer, H., Rauscher, T. and Csoto, A., ”Sensitivity of the C and O production on the 3{\(\alpha\)} rate”, Astrophys. Space Sci., 291, 27, (200). [astro-ph/0307528]. (Cited on page 62.)
[452] Scoccola, C.G., Landau, S.J. and Vucetich, H., ”WMAP-5yr constraints on ti · doi:10.1016/j.physletb.2008.09.051
[453] Scoccola, C.G., Landau, S.J. and Vucetich, H., ”WMAP 5-year constraints on ti
[454] Seager, S., Savelov, D.D. and Scott, D., ”A new calculation of the recombination epoch”, Astrophys. J. Lett., 523, L1, (1999). [DOI], [astro-ph/9909275]. (Cited on page 65.) · doi:10.1086/312250
[455] Serna, A. and Alimi, J.M., ”Scalar-tensor cosmological models”, Phys. Rev. D, 53, 3074, (1996). [DOI]. (Cited on page 83.) · Zbl 0954.83515 · doi:10.1103/PhysRevD.53.3074
[456] Serot, B.D. and Walecka, J.D., ”Recent progress in quantum hadrodynamics”, Int. J. Mod. Phys. E, 6, 515, (1997). [DOI]. (Cited on page 95.) · doi:10.1142/S0218301397000299
[457] Shapiro, I.I., ”Solar system tests of general relativity: Recent results and present plans”, in Ashby, N., Bartlett, D.F. and Wyss, W., eds., General Relativity and Gravitation, Proceedings of the 12th International Conference on General Relativity and Gravitation, University of Colorado at Boulder, July 2–8, 1989, pp. 313–330, (Cambridge University Press, Cambridge; New York, 1990). [Google Books]. (Cited on pages 20 and 77.)
[458] Shapiro, I.I., Smith, W.B. and Ash, M.B., ”Gravitational Constant: Experimental Bound on Its Time Variation”, Phys. Rev. Lett., 26, 27, (1971). [DOI]. (Cited on page 77.) · doi:10.1103/PhysRevLett.26.27
[459] Shapiro, S.S., Davis, J.L., Lebach, D.E. and Gregory, J.S., ”Measurement of the Solar Gravitational Deflection of Radio Waves using Geodetic Very-Long-Baseline Interferometry Data, 1979–1999”, Phys. Rev. Lett., 92, 121101, (2004). [DOI]. (Cited on page 20.) · doi:10.1103/PhysRevLett.92.121101
[460] Shaw, D.J., ”Detecting Seasonal Changes in the Fundamental Constants”, e-print, (2007). [gr-qc/0702090]. (Cited on page 104.)
[461] Shaw, D.J. and Barrow, J.D., ”Varying couplings in electroweak theory”, Phys. Rev. D, 71, 063525, (2005). [DOI], [gr-qc/0412135]. (Cited on pages 100 and 104.) · doi:10.1103/PhysRevD.71.063525
[462] Shaw, D.J. and Barrow, J.D., ”Local Experiments See Cosmologically Varying Constants”, Phys. Lett. B, 639, 596–599, (2006). [gr-qc/0512117]. (Cited on page 104.) · doi:10.1016/j.physletb.2006.07.016
[463] Shaw, D.J. and Barrow, J.D., ”Varying constants: constraints from seasonal variations”, Mem. Soc. Astron. Ital., 80, 791, (2009). (Cited on pages 105 and 109.)
[464] Shelnikov, A., Butcher, R.J., Chardonnet, C. and Amy-Klein, A., ”Stability of the proton-to-electron mass ratio”, Phys. Rev. Lett., 100, 150801, (2008). [DOI], [arXiv:0803.1829 [physics.atom-ph]]. (Cited on page 32.) · doi:10.1103/PhysRevLett.100.150801
[465] Shlyakhter, A.I., ”Direct test of the constancy of the fundamental constants using Oklo nuclear reactor”, Nature, 264, 340, (1976). [DOI]. (Cited on pages 35, 36, 37, and 38.) · doi:10.1038/264340a0
[466] Sigurdson, K., Kurylov, A. and Kamionkowski, M., ”Spatial Variation of the Fine-Structure Parameter and the Cosmic Microwave Background”, Phys. Rev. D, 68, 103509, (2003). [DOI], [astro-ph/0306372]. (Cited on page 106.) · doi:10.1103/PhysRevD.68.103509
[467] Sisterna, P. and Vucetich, H., ”Time variation of fundamental constants: bounds from geophysical and astronomical data”, Phys. Rev. D, 41, 1034, (1990). [DOI]. (Cited on pages 39 and 40.) · doi:10.1103/PhysRevD.41.1034
[468] Smoliar, M., Walker, R. and Morgan, J., ”Re-Os ages from group IIA, IIIA, IVA and IVB iron meteorites”, Science, 271, 1099, (1996). [DOI]. (Cited on page 43.) · doi:10.1126/science.271.5252.1099
[469] Spite, M. and Spite, F., ”Li isotopes in metal-poor halo dwarfs, a more and more complicated story”, in Charbonnel, C., Tosi, M., Primas, F. and Chiappini, C., eds., Light Elements in the Universe, Proceedings of IAU Symposium 268, Geneva, Switzerland, 9–13 November 2009, IAU Symposia, 268, pp. 201–210, (Cambridge University Press, Cambridge; New York, 2009). [DOI], [arXiv:1002.1004 [astro-ph.GA]]. (Cited on page 70.)
[470] Srianand, R., Chand, H., Petitjean, P. and Aracil, B., ”Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars”, Phys. Rev. Lett., 92, 121302, (2004). [DOI], [astro-ph/0402177]. (Cited on pages 49 and 50.) · doi:10.1103/PhysRevLett.92.121302
[471] Srianand, R., Chand, H., Petitjean, P. and Aracil, B., ”Reply to the Comment by M.T. Murphy, J.K. Webb, and V.V. Flambaum”, Phys. Rev. Lett., 99, 239002, (2007). [DOI], [arXiv:0711.1742 [astro-ph]]. (Cited on pages 50 and 51.) · doi:10.1103/PhysRevLett.99.239002
[472] Srianand, R., Gupta, N., Petitjean, P., Noterdaeme, P. and Ledoux, C., ”Detection of 21-cm, H2 and Deuterium absorption at z > 3 along the line of sight to J1337+3152”, Mon. Not. R. Astron. Soc., 405, 1888–1900, (2010). [DOI], [arXiv:1002.4620 [astro-ph.CO]]. (Cited on pages 52 and 59.)
[473] Srianand, R., Noterdaeme, P., Ledoux, C. and Petitjean, P., ”First detection of CO in a high-redshift damped Lyman-{\(\alpha\)} system”, Astron. Astrophys., 482, L39–L42, (2008). [DOI]. (Cited on page 57.) · doi:10.1051/0004-6361:200809727
[474] Srianand, R., Petitjean, P., Chand, H., Noterdaeme, P. and Gupta, N., ”Probing the variation of fundamental constants using QSO absorption lines”, Mem. Soc. Astron. Ital., 80, 842, (2009). (Cited on page 44.)
[475] Starkman, G.D. and Trotta, R., ”Why anthropic reasoning cannot predict {\(\Lambda\)}”, Phys. Rev. Lett., 97, 201301, (2006). [DOI], [astro-ph/0607227]. (Cited on page 113.) · doi:10.1103/PhysRevLett.97.201301
[476] Stefanecsu, P., ”Constraints on time variation of the fine structure constant from WMAP-3yr data”, New Astronomy, 12, 635, (2007). [arXiv:0707.0190 [astro-ph]]. (Cited on pages 66 and 67.) · doi:10.1016/j.newast.2007.06.004
[477] Steinhardt, P.J. and Wesley, D., ”Exploring extra dimensions through observational tests of dark energy and varying Newton’s constant”, arXiv, e-print, (2010). [arXiv:1003.2815 [astro-ph.CO]]. (Cited on page 101.)
[478] Steinmetz, T. et al., ”Laser frequency combs for astronomical observations”, Science, 321, 1335–1337, (2008). [DOI], [arXiv:0809.1663 [astro-ph]]. (Cited on page 60.) · doi:10.1126/science.1161030
[479] Stoeger, W.R., ”Retroduction, Multiverse Hypotheses and Their Testability”, e-print, (2006). [astro-ph/0602356]. (Cited on page 113.)
[480] Stoeger, W.R., Ellis, G.F.R. and Kirchner, U., ”Multiverses and Cosmology: Philosophical Issues”, arxiv, e-print, (2004). [arxiv:astro-ph/0407329]. (Cited on page 113.)
[481] Su, Y., Heckel, B.R., Adelberger, E.G., Gundlach, J.H., Harris, M., Smith, G.L. and Swanson, H.E., ”New tests of the universality of free fall”, Phys. Rev. D, 50, 3614–3636, (1994). [DOI]. (Cited on page 19.) · doi:10.1103/PhysRevD.50.3614
[482] Susskind, L., ”The Anthropic Landscape of String Theory”, e-print, (2003). [hep-th/0302219]. (Cited on page 110.) · Zbl 1188.83105
[483] Taveras, V. and Yunes, N., ”The Barbero-Immirzi parameter as a scalar field: K-inflation from loop quantum gravity?”, Phys. Rev. D, 78, 064070, (2008). [DOI], [arXiv:0807.2652 [gr-qc]]. (Cited on page 101.) · doi:10.1103/PhysRevD.78.064070
[484] Taylor, T.R. and Veneziano, G., ”Dilaton couplings at large distance”, Phys. Lett. B, 213, 450–454, (1988). [DOI]. (Cited on pages 89 and 90.) · doi:10.1016/0370-2693(88)91290-7
[485] Tegmark, M., Aguirre, A., Rees, M.J. and Wilczek, F., ”Dimensionless constants, cosmology and other dark matters”, Phys. Rev. D, 73, 023505, (2006). [DOI], [astro-ph/0511774]. (Cited on page 112.) · doi:10.1103/PhysRevD.73.023505
[486] Tegmark, M. and Rees, M.J., ”Why is the level fluctuation level 10?”, Astrophys. J., 499, 526, (1998). [astro-ph/9709058]. (Cited on page 112.) · doi:10.1086/305673
[487] Teller, E., ”On The Change Of Physical Constants”, Phys. Rev., 73, 801, (1948). [DOI]. (Cited on page 79.) · doi:10.1103/PhysRev.73.801
[488] Thompson, R.I., ”The determination of the electron-to-proton inertial mass via molecular transitions”, Astrophys. Lett., 16, 3, (1975). (Cited on pages 32 and 55.)
[489] Thompson, R.I., ”Observational determinations of the proton to electron mass ratio in the early universe”, Mem. Soc. Astron. Ital., 80, 870, (2009). (Cited on page 56.)
[490] Thompson, R.I. et al., ”An observational determination of the proton to electron mass ratio in the early universe”, Astrophys. J., 703, 1648, (2009). [DOI], [arXiv:0907.4392 [astro-ph.CO]]. (Cited on pages 56 and 59.) · doi:10.1088/0004-637X/703/2/1648
[491] Thomson, D.R., LeMere, M. and Tang, Y.C., ”Systematic investigation of scattering problems with the resonating-group method”, Nucl. Phys. A, 286, 53–66, (1977). [DOI]. (Cited on page 62.) · doi:10.1016/0375-9474(77)90007-0
[492] Thorsett, S.E., ”The Gravitational Constant, The Chandrasekhar Limit, And Neutron Star Masses”, Phys. Rev. Lett., 77, 1432–1435, (1996). [DOI]. (Cited on pages 81 and 82.) · doi:10.1103/PhysRevLett.77.1432
[493] Touboul, P., Rodrigues, M., Métris, G. and Tatry, B., ”MICROSCOPE, testing the equivalence principle in space”, C. R. Acad. Sci., 2(9), 1271–1286, (2001). (Cited on page 19.)
[494] Tsanavaris, P., Murphy, M.T., Webb, J.K., Flambaum, V.V. and Curran, S.J., ”Probing variations in fundamental constants with radio and optical quasar absorption-line observations”, Mon. Not. R. Astron. Soc., 374, 634–646, (2007). [DOI], [ADS], [astro-ph/0610326]. (Cited on pages 52 and 59.) · doi:10.1111/j.1365-2966.2006.11178.x
[495] Turyshev, S.G., ”Experimental Tests of General Relativity”, Annu. Rev. Nucl. Part. Sci., 58, 207–248, (2008). [DOI], [arXiv:0806.1731 [gr-qc]]. (Cited on page 20.) · doi:10.1146/annurev.nucl.58.020807.111839
[496] Tzanavaris, P., Webb, J.K., Murphy, M.T., Flambaum, V.V. and Curran, S.J., ”Limits on Variations in Fundamental Constants from 21-cm and Ultraviolet Quasar Absorption Lines”, Phys. Rev. Lett., 95, 041301, (2005). [DOI], [astro-ph/0412649]. (Cited on page 52.) · doi:10.1103/PhysRevLett.95.041301
[497] Unzicker, A., ”A look at the abandoned contributions to cosmology of Dirac, Sciama and Dicke”, Ann. Phys. (Berlin), 18(1), 57, (2009). [DOI], [arXiv:0708.3518 [physics.gen-ph]]. (Cited on page 7.) · Zbl 1159.83025 · doi:10.1002/andp.200810335
[498] Upadhye, A., Gruber, S.S. and Khoury, J., ”Unveiling chameleons in tests of gravitational inverse-square law”, Phys. Rev. D, 74, 104024, (2006). [DOI], [hep-ph/0608186]. (Cited on page 99.) · doi:10.1103/PhysRevD.74.104024
[499] Uzan, J.-P., ”Cosmological scaling solutions of nonminimally coupled scalar fields”, Phys. Rev. D, 59, 123510, (1999). [DOI], [gr-qc/9903004]. (Cited on page 23.) · doi:10.1103/PhysRevD.59.123510
[500] Uzan, J.-P., ”The fundamental constants an their variation: observational and theoretical status”, Rev. Mod. Phys., 75, 403–455, (2003). [DOI], [hep-ph/0205340]. (Cited on pages 8, 29, 43, 44, 47, 55, 66, 70, 76, and 79.) · Zbl 1205.81142 · doi:10.1103/RevModPhys.75.403
[501] Uzan, J.-P., ”Variation of the Constants of Nature in the Early and Late Universe”, in Martins, C.J.A.P., Avelino, P.P., Costa, M.S., Mack, K., Mota, M.F. and Parry, M., eds., Phi in the Sky: The Quest for Cosmological Scalar Fields, Porto, Portugal, 8–10 July 2004, AIP Conference Proceedings, 736, pp. 3–20, (American Institute of Physics, Melville, NY, 2004). [DOI], [astro-ph/0409424]. (Cited on page 8.)
[502] Uzan, J.-P., ”The acceleration of the universe and the physics behind it”, Gen. Relativ. Gravit., 39, 307, (2007). [DOI], [astro-ph/0605313]. (Cited on pages 23 and 82.) · Zbl 1137.83386 · doi:10.1007/s10714-006-0385-z
[503] Uzan, J.-P., ”Fundamental constants, general relativity and cosmology”, Mem. Soc. Astron. Ital., 80, 762, (2009). (Cited on page 8.)
[504] Uzan, J.-P., ”Dark energy, gravitation and the Copernican principle”, in Ruiz-Lapuente, P., ed., Dark Energy: Observational and Theoretical Approaches, pp. 3–47, (Cambridge University Press, Cambridge; New York, 2010). [arXiv:0912.5452 [gr-qc]]. (Cited on pages 23 and 82.)
[505] Uzan, J.-P., ”Fundamental constants and tests of general relativity – Theoretical and cosmological considerations”, Space Sci. Rev., 148, 249, (2010). [arXiv:0907.3081 [gr-qc]]. (Cited on page 8.) · doi:10.1007/s11214-009-9503-z
[506] Uzan, J.-P., ”Tests of General Relativity on Astrophysical Scales”, Gen. Relativ. Gravit., 42, 2219, (2010). [DOI], [arXiv:0908.2243 [astro-ph.CO]]. (Cited on page 82.) · Zbl 1197.83032 · doi:10.1007/s10714-010-1047-8
[507] Uzan, J.-P., Bernardeau, F. and Mellier, Y., ”Time drift of cosmological redshifts and its variance”, Phys. Rev. D, 77, 021301(R), (2008). [DOI], [arXiv:0711.1950 [astro-ph]]. (Cited on page 60.) · doi:10.1103/PhysRevD.77.021301
[508] Uzan, J.-P., Clarkson, C. and Ellis, G.F.R., ”Time drift of cosmological redshifts as a test of the Copernican principle”, Phys. Rev. Lett., 100, 191303, (2008). [DOI], [arXiv:0801.0068 [astro-ph]]. (Cited on page 23.) · doi:10.1103/PhysRevLett.100.191303
[509] Uzan, J.-P. and Leclercq, B., The Natural Laws of the Universe: Understanding Fundamental Constants, Springer-Praxis Books in Popular Astronomy, (Springer; Praxis, New York; Chichester, UK, 2008). (Cited on pages 9, 14, and 34.)
[510] Uzan, J.-P. and Lehoucq, R., Les constantes fondamentales, (Belin, Paris, 2005). (Cited on pages 9, 11, and 14.)
[511] Vaas, R., ”Multiverse Scenarios in Cosmology: Classification, Cause, Challenge, Controversy, and Criticism”, J. Cosmol., 4, 664–673, (2010). [arXiv:1001.0726 [physics.gen-ph]]. URL (accessed 25 March 2010): http://journalofcosmology.com/Multiverse7.html. (Cited on page 113.)
[512] Varshalovich, D.A. and Levshakov, S.A., ”On a time dependence of physical constants”, J. Exp. Theor. Phys. Lett., 58, 231, (1993). (Cited on page 55.)
[513] Varshalovich, D.A. and Potekhin, A.Y., ”Have the masses of molecules changed during the lifetime of the Universe?”, Astron. Lett., 22, 1, (1996). (Cited on page 53.)
[514] Veneziano, G., ”A Stringy Nature Needs Just Two Constants”, Europhys. Lett., 2, 199, (1986). [DOI]. (Cited on page 16.) · doi:10.1209/0295-5075/2/3/006
[515] Veneziano, G., ”Large-N bounds on, and compositeness limit of, gauge and gravitational interactions”, J. High Energy Phys., 2002(06), 051, (2002). [DOI], [hep-th/0110129]. (Cited on page 89.) · doi:10.1088/1126-6708/2002/06/051
[516] Verbiest, J.P.W. et al., ”Precision timing of PSR J0437–4715: an accurate pulsar distance, a high pulsar mass and a limit on the variation of Newton’s gravitational constant”, Astrophys. J., 679, 675–680, (2008). [DOI], [arXiv:0801.2589 [astro-ph]]. (Cited on page 78.) · doi:10.1086/529576
[517] Vessot, R.F.C. and Levine, M.W., ”A Test of the Equivalence Principle Using a Space-Borne Clock”, Gen. Relativ. Gravit., 10, 181–204, (1979). [DOI]. (Cited on page 19.) · doi:10.1007/BF00759854
[518] Vila, S.C., ”Changing gravitational constant and white dwarfs”, Astrophys. J., 206, 213, (1976). [DOI]. (Cited on page 81.) · doi:10.1086/154373
[519] Vilenkin, A., ”Predictions from Quantum Cosmology”, Phys. Rev. Lett., 74, 846–849, (1995). [DOI], [gr-qc/9406010]. (Cited on page 113.) · doi:10.1103/PhysRevLett.74.846
[520] Volovik, G.E., ”Fundamental constants in effective theory”, J. Exp. Theor. Phys. Lett., 76, 77, (2002). [DOI], [physics/0203075]. (Cited on page 17.) · doi:10.1134/1.1510061
[521] Volovik, G.E., ”h as parameter of Minkowski metric in effective theory”, J. Exp. Theor. Phys. Lett., 90, 697–704, (2009). [DOI], [arXiv:0904.1965 [gr-qc]]. (Cited on page 9.) · doi:10.1134/S0021364009230027
[522] Webb, J.K., Flambaum, V.V., Churchill, C.W., Drinkwater, M.J. and Barrow, J.D., ”Search for time variation of the fine structure constant”, Phys. Rev. Lett., 82, 884–887, (1999). [DOI], [astro-ph/9803165]. (Cited on pages 47 and 48.) · doi:10.1103/PhysRevLett.82.884
[523] Webb, J.K., King, J.A., Murphy, M.T., Flambaum, V.V., Carswell, R.F. and Bainbridge, M.B., ”Evidence for spatial variation of the fine structure constant”, arXiv, e-print, (2010). [arXiv:1008.3907 [astro-ph.CO]]. (Cited on pages 51 and 106.)
[524] Webb, J.K., Murphy, M.T., Flambaum, V.V., Dzuba, V.A., Barrow, J.D., Churchill, C.W., Prochaska, J.X. and Wolfe, A.M., ”Further Evidence for Cosmological Evolution of the Fine Structure Constant”, Phys. Rev. Lett., 87, 091301, (2001). [DOI], [astro-ph/0012539]. (Cited on pages 48 and 89.) · doi:10.1103/PhysRevLett.87.091301
[525] Weinberg, S., ”Charges from extra dimensions”, Phys. Lett. B, 125, 265–269, (1983). [DOI]. (Cited on page 89.) · doi:10.1016/0370-2693(83)91281-9
[526] Weinberg, S., ”Overview of theoretical prospects for understanding the values of fundamental constants”, Philos. Trans. R. Soc. London, Ser. A, 310, 249, (1983). [DOI]. (Cited on page 9.) · doi:10.1098/rsta.1983.0086
[527] Weinberg, S., ”Anthropic Bound on the Cosmological Constant”, Phys. Rev. Lett., 59, 2607–2610, (1987). [DOI]. (Cited on page 112.) · doi:10.1103/PhysRevLett.59.2607
[528] Weinberg, S., ”The cosmological constant problem”, Rev. Mod. Phys., 61, 1–23, (1989). [DOI]. (Cited on pages 23 and 113.) · Zbl 1129.83361 · doi:10.1103/RevModPhys.61.1
[529] Wendt, M. and Reimers, D., ”Variability of the proton-to-electron mass ratio on cosmological scales”, Eur. Phys. J. Special Topics, 163, 197–206, (2008). [DOI], [arXiv:0802.1160 [astro-ph]]. (Cited on page 56.) · doi:10.1140/epjst/e2008-00820-x
[530] Wendt, M., Reimers, D. and Molaro, P., ”Cosmological observations to shed light on possible variations: expectations, limitations and status quo”, Mem. Soc. Astron. Ital., 80, 876–881, (2009). (Cited on page 56.)
[531] Wetterich, C., ”Crossover quintessence and cosmological history of fundamental ’constants”’, Phys. Lett. B, 561, 10, (2003). [hep-ph/0301261]. (Cited on pages 24 and 102.) · Zbl 1017.83028 · doi:10.1016/S0370-2693(03)00383-6
[532] Wetterich, C., ”Probing Quintessence with Time Variation of Couplings”, J. Cosmol. Astropart. Phys., 2003(10), 002, (2003). [DOI], [hep-ph/0203266]. (Cited on pages 24 and 108.) · doi:10.1088/1475-7516/2003/10/002
[533] Wetterich, C., ”Growing neutrinos and cosmological selection”, Phys. Lett. B, 655, 201–208, (2007). [DOI], [arXiv:0706.4427 [hep-ph]]. (Cited on pages 101 and 102.) · doi:10.1016/j.physletb.2007.08.060
[534] Whitmore, J.B., Murphy, M.T. and Griest, K., ”Wavelength Calibration of the VLT-UVES Spectrograph”, Astrophys. J., 732, 89–99, (2010). [DOI], [arXiv:1004.3325 [astro-ph.IM]]. (Cited on pages 48, 49, and 50.) · doi:10.1088/0004-637X/723/1/89
[535] Wignall, J.W.G., ”How many fundamental constants does quantum physics need?”, Int. J. Mod. Phys. A, 15, 875, (2000). (Cited on page 16.) · Zbl 0968.81002
[536] Wiklind, T. and Combes, F., ”Molecular absorption lines at high redshift: PKS 1413+135 (z = 0.247)”, Astron. Astrophys., 328, 48, (1997). [astro-ph/9708051]. (Cited on pages 53 and 59.)
[537] Wilczek, F., ”Enlightenment, Knowledge, Ignorance, Temptation”, e-print, (2005). [hep-ph/0512187]. (Cited on page 113.) · Zbl 1206.83181
[538] Wilczek, F., ”Fundamental constants”, arXiv, e-print, (2007). [arXiv:0708.4361 [hep-ph]]. (Cited on pages 9, 11, and 113.)
[539] Wilkinson, D.H., ”Do the ’constants of nature’ change with time?”, Philos. Mag., 3, 582, (1958). [DOI]. (Cited on pages 40 and 42.) · doi:10.1080/14786435808565799
[540] Will, C.M., Theory and Experiment in Gravitational Physics, (Cambridge University Press, Cambridge; New York, 1993), 2nd edition. [Google Books]. (Cited on pages 17, 20, 76, and 85.) · Zbl 0785.53068
[541] Will, C.M., ”The Confrontation between General Relativity and Experiment”, Living Rev. Relativity, 9, lrr-2006-3, (2006). [gr-qc/0510072]. URL (accessed 27 September 2010): http://www.livingreviews.org/lrr-2006-3. (Cited on page 20.) · Zbl 1316.83020
[542] Williams, J.G., Newhall, X.X. and Dickey, J.O., ”Relativity parameters determined from lunar laser ranging”, Phys. Rev. D, 53, 6730–6739, (1996). [DOI]. (Cited on pages 19 and 77.) · doi:10.1103/PhysRevD.53.6730
[543] Williams, J.G., Turyshev, S.G. and Boggs, D.H., ”Progress in Lunar Laser Ranging Tests of Relativistic Gravity”, Phys. Rev. Lett., 93, 261101, (2004). [DOI], [gr-qc/0411113]. (Cited on pages 19, 20, and 77.) · doi:10.1103/PhysRevLett.93.261101
[544] Williams, J.G. et al., ”New Test of the Equivalence Principle from Lunar Laser Ranging”, Phys. Rev. Lett., 36, 551–554, (1976). [DOI]. (Cited on page 77.) · doi:10.1103/PhysRevLett.36.551
[545] Witten, E., ”Search for a Realistic Kaluza-Klein Theory”, Nucl. Phys. B, 186, 412, (1981). [DOI]. (Cited on page 89.) · Zbl 1156.83330 · doi:10.1016/0550-3213(81)90021-3
[546] Witten, E., ”Some Properties of O(32) Superstrings”, Phys. Lett. B, 149, 351–356, (1984). [DOI], [ADS]. (Cited on pages 89 and 90.) · doi:10.1016/0370-2693(84)90422-2
[547] Wolf, P. et al., ”Quantum physics exploring gravity in the outer solar system: the SAGAS project”, Exp. Astron., 23, 651–687, (2009). [DOI], [arXiv:0711.0304 [gr-qc]]. (Cited on pages 34 and 105.) · doi:10.1007/s10686-008-9118-5
[548] Wolfe, A.M., Broderick, J.J., Condon, J.J. and Johnston, K.J., ”3C 286: A cosmological QSO?”, Astrophys. J. Lett., 208, L47, (1976). [DOI], [ADS]. (Cited on page 52.) · doi:10.1086/182230
[549] Wu, F. and Chen, X., ”Cosmic microwave background with Brans-Dicke gravity II: constraints with the WMAP and SDSS data”, Phys. Rev. D, 82, 083003, 1–10, (2010). [DOI], [arXiv:0903.0385 [astro-ph.CO]]. (Cited on page 83.)
[550] Wu, Y.S. and Wang, Z., ”Time Variation of Newton’s Gravitational Constant in Superstring Theories”, Phys. Rev. Lett., 57, 1978, (1986). [DOI]. (Cited on page 89.) · doi:10.1103/PhysRevLett.57.1978
[551] Yang, J., Schramm, D.N., Steigmann, G. and Rood, R.T., ”Time Variation of Newton’s Gravitational Constant in Superstring Theories”, Astrophys. J., 227, 697, (1979). (Cited on pages 83 and 84.) · doi:10.1086/156779
[552] Yong, D., Grundahl, F., Lambert, D.L., Nissen, P.E. and Shetrone, M.D., ”Mg isotopic ratios in giant stars of the globular cluster NGC 6752”, Astron. Astrophys., 402, 985–1001, (2003). [DOI], [astro-ph/0303057]. (Cited on page 49.) · doi:10.1051/0004-6361:20030296
[553] Yoo, J.J. and Scherrer, R.J., ”Big bang nucleosynthesis and cosmic background constraints on the time variation of the Higgs vaccuum expectation value”, Phys. Rev. D, 67, 043517, (2003). [DOI], [astro-ph/0211545]. (Cited on pages 74 and 95.) · doi:10.1103/PhysRevD.67.043517
[554] Yunes, N., Pretorius, F. and Spergel, D., ”Constraining the evolutionary history of Newton’s constant with gravitational wave observations”, Phys. Rev. D, 81, 064018, (2010). [DOI], [arXiv:0912.2724 [gr-qc]]. (Cited on page 82.) · doi:10.1103/PhysRevD.81.064018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.