×

Dirichlet heat kernel for unimodal Lévy processes. (English) Zbl 1320.60112

Summary: We estimate the heat kernel of the smooth open set for the isotropic unimodal pure-jump Lévy process with infinite Lévy measure and weakly scaling Lévy-Khintchine exponent.

MSC:

60G51 Processes with independent increments; Lévy processes
60J75 Jump processes (MSC2010)
60J35 Transition functions, generators and resolvents
60J50 Boundary theory for Markov processes
35K08 Heat kernel
31B25 Boundary behavior of harmonic functions in higher dimensions

References:

[1] Bañuelos, R.; Bogdan, K., Symmetric stable processes in parabola-shaped regions, Proc. Amer. Math. Soc., 133, 12, 3581-3587 (2005), (electronic) · Zbl 1080.31003
[2] Bañuelos, R.; Kulczycki, T., The Cauchy process and the Steklov problem, J. Funct. Anal., 211, 2, 355-423 (2004) · Zbl 1055.60072
[3] Bingham, N. H.; Goldie, C. M.; Teugels, J. L., (Regular Variation. Regular Variation, Encyclopedia of Mathematics and its Applications, vol. 27 (1987), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0617.26001
[4] Blumenthal, R. M.; Getoor, R. K., (Markov Processes and Potential Theory. Markov Processes and Potential Theory, Pure and Applied Mathematics, vol. 29 (1968), Academic Press: Academic Press New York) · Zbl 0169.49204
[5] Bogdan, K.; Byczkowski, T.; Kulczycki, T.; Ryznar, M.; Song, R.; Vondraček, Z., (Graczyk, Piotr; Stos, Andrzej, Potential Analysis of Stable Processes and its Extensions. Potential Analysis of Stable Processes and its Extensions, Lecture Notes in Mathematics, vol. 1980 (2009), Springer-Verlag: Springer-Verlag Berlin)
[6] Bogdan, K.; Grzywny, T., Heat kernel of fractional Laplacian in cones, Colloq. Math., 118, 2, 365-377 (2010) · Zbl 1196.60137
[7] Bogdan, K.; Grzywny, T.; Ryznar, M., Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Probab., 38, 5, 1901-1923 (2010) · Zbl 1204.60074
[8] Bogdan, K.; Grzywny, T.; Ryznar, M., Barriers, exit time and survival probability for unimodal Lévy processes, Probab. Theory Relat. Fields (2014) · Zbl 1317.31016
[9] Bogdan, K.; Grzywny, T.; Ryznar, M., Density and tails of unimodal convolution semigroups, J. Funct. Anal., 266, 6, 3543-3571 (2014) · Zbl 1290.60002
[10] Bogdan, K.; Jakubowski, T., Estimates of the Green function for the fractional Laplacian perturbed by gradient, Potential Anal., 36, 3, 455-481 (2012) · Zbl 1238.35018
[11] Bogdan, K.; Kumagai, T.; Kwaśnicki, M., Boundary Harnack inequality for Markov processes with jumps, Trans. Amer. Math. Soc. (2012), (in press) arxiv:1207.3160
[12] Caffarelli, L. A.; Vasseur, A., Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2), 171, 3, 1903-1930 (2010) · Zbl 1204.35063
[13] Chen, Z.-Q.; Kim, P.; Kumagai, T., On heat kernel estimates and parabolic Harnack inequality for jump processes on metric measure spaces, Acta Math. Sin. (Engl. Ser.), 25, 7, 1067-1086 (2009) · Zbl 1171.60373
[14] Chen, Z.-Q.; Kim, P.; Song, R., Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc. (JEMS), 12, 5, 1307-1329 (2010) · Zbl 1203.60114
[15] Chen, Z.-Q.; Kim, P.; Song, R., Dirichlet heat kernel estimates for \(\Delta^{\alpha / 2} + \Delta^{\beta / 2}\), Illinois J. Math., 54, 4, 1357-1392 (2012) · Zbl 1268.60101
[16] Chen, Z.-Q.; Kim, P.; Song, R., Global heat kernel estimate for relativistic stable processes in exterior open sets, J. Funct. Anal., 263, 2, 448-475 (2012) · Zbl 1255.60076
[17] Chen, Z.-Q.; Kim, P.; Song, R., Dirichlet heat kernel estimates for rotationally symmetric Lévy processes, Proc. Lond. Math. Soc. (2014) · Zbl 1304.60080
[18] Chen, Z.-Q.; Kumagai, T., Heat kernel estimates for jump processes of mixed types on metric measure spaces, Probab. Theory Related Fields, 140, 1-2, 277-317 (2008) · Zbl 1131.60076
[19] Chen, Z.-Q.; Tokle, J., Global heat kernel estimates for fractional Laplacians in unbounded open sets, Probab. Theory Related Fields, 149, 3-4, 373-395 (2011) · Zbl 1231.60078
[20] Chung, K. L.; Zhao, Z. X., (From Brownian Motion to Schrödinger’s Equation. From Brownian Motion to Schrödinger’s Equation, Grundlehren der Mathematischen Wissenschaften, vol. 312 (1995), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0819.60068
[21] Davies, E. B., (Heat Kernels and Spectral Theory. Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, vol. 92 (1989), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0699.35006
[22] Grzywny, T., Intrinsic ultracontractivity for Lévy processes, Probab. Math. Statist., 28, 1, 91-106 (2008) · Zbl 1146.60043
[23] Grzywny, T., On Harnack inequality and Hölder regularity for isotropic unimodal Lévy processes, Potential Anal. (2013)
[24] Grzywny, T.; Ryznar, M., Potential theory for one dimensional geometric stable processes, Colloq. Math., 129, 1, 7-40 (2012) · Zbl 1276.60083
[25] Gyrya, P.; Saloff-Coste, L., Neumann and Dirichlet heat kernels in inner uniform domains, Astérisque, 336, viii+144 (2011) · Zbl 1222.58001
[26] Hiroshima, F.; Lörinczi, J., Lieb-Thirring bound for Schrödinger operators with Bernstein functions of the Laplacian, Commun. Stoch. Anal., 6, 4, 589-602 (2012) · Zbl 1331.47064
[28] Ikeda, N.; Watanabe, S., On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes, J. Math. Kyoto Univ., 2, 79-95 (1962) · Zbl 0118.13401
[29] Kaleta, K.; Kwaśnicki, M.; Małecki, J., One-dimensional quasi-relativistic particle in the box, Rev. Math. Phys., 25, 8, 1350014 (2013), 52 · Zbl 1278.81068
[30] Karch, G.; Woyczyński, W. A., Fractal Hamilton-Jacobi-KPZ equations, Trans. Amer. Math. Soc., 360, 5, 2423-2442 (2008) · Zbl 1136.35012
[31] Kim, P.; Song, R., Boundary behavior of harmonic functions for truncated stable processes, J. Theoret. Probab., 21, 2, 287-321 (2008) · Zbl 1145.60026
[32] Kim, P.; Song, R.; Vondraček, Z., Uniform boundary Harnack principle for rotationally symmetric Lévy processes in general open sets, Sci. China Math., 55, 11, 2193-2416 (2012) · Zbl 1262.60077
[33] Kim, P.; Song, R.; Vondraček, Z., Global uniform boundary Harnack principle with explicit decay rate and its application, Stochastic Process. Appl., 123, 3, 764-795 (2013) · Zbl 1266.31007
[35] Knopova, V.; Schilling, R. L., A note on the existence of transition probability densities of Lévy processes, Forum Math., 25, 1, 125-149 (2013) · Zbl 1269.60050
[36] Kulczycki, T.; Ryznar, M., Gradient estimates of harmonic functions and transition densities for Lévy processes, Trans. Amer. Math. Soc. (2013), (in press) arXiv:1307.7158
[37] Kulczycki, T.; Siudeja, B., Intrinsic ultracontractivity of the Feynman-Kac semigroup for relativistic stable processes, Trans. Amer. Math. Soc., 358, 11, 5025-5057 (2006), (electronic) · Zbl 1112.47034
[38] Kwaśnicki, M.; Małecki, J.; Ryznar, M., Suprema of Lévy processes, Ann. Probab., 41, 3B, 2047-2065 (2013) · Zbl 1288.60061
[39] Lieb, E. H.; Seiringer, R., The Stability of Matter in Quantum Mechanics (2010), Cambridge University Press: Cambridge University Press Cambridge
[40] Pruitt, W. E., The growth of random walks and Lévy processes, Ann. Probab., 9, 6, 948-956 (1981) · Zbl 0477.60033
[41] Sato, K.-i., (Lévy Processes and Infinitely Divisible Distributions. Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, vol. 68 (1999), Cambridge University Press: Cambridge University Press Cambridge), Translated from the 1990 Japanese original, Revised by the author · Zbl 0973.60001
[42] Schilling, R. L.; Song, R.; Vondraček, Z., (Bernstein Functions. Bernstein Functions, de Gruyter Studies in Mathematics, vol. 37 (2012), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin), Theory and applications · Zbl 1257.33001
[43] Silverstein, M. L., Classification of coharmonic and coinvariant functions for a Lévy process, Ann. Probab., 8, 3, 539-575 (1980) · Zbl 0459.60063
[44] Siudeja, B., Symmetric stable processes on unbounded domains, Potential Anal., 25, 4, 371-386 (2006) · Zbl 1111.31004
[45] Song, R.; Vondraček, Z., On suprema of Lévy processes and application in risk theory, Ann. Inst. H. Poincaré Probab. Statist., 44, 5, 977-986 (2008) · Zbl 1178.60036
[46] Sztonyk, P., Transition density estimates for jump Lévy processes, Stochastic Process. Appl., 121, 6, 1245-1265 (2011) · Zbl 1217.60036
[47] Varopoulos, N. T., Gaussian estimates in Lipschitz domains, Canad. J. Math., 55, 2, 401-431 (2003) · Zbl 1042.58013
[48] Watanabe, T., The isoperimetric inequality for isotropic unimodal Lévy processes, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 63, 4, 487-499 (1983) · Zbl 0516.60079
[49] Zhang, Q. S., The boundary behavior of heat kernels of Dirichlet Laplacians, J. Differential Equations, 182, 2, 416-430 (2002) · Zbl 1002.35052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.