×

Suprema of Lévy processes. (English) Zbl 1288.60061

Given a one-dimensional Lévy process \((X_t)_{t\geq0}\), the cumulative distribution function of the supremum process \(M_t=\sup_{0\leq s\leq t}X_s\) is studied. Relying on fluctuation theory, simple sharp bounds for \(\operatorname P(M_t<x)\) are derived for a large class of Lévy processes. Recalling that the ascending ladder-time process is given as the right-continuous inverse of the local time, it is proved under mild assumptions that \[ \operatorname P(M_t<x)\approx\min(1,\kappa(1/t,0)V(x)),\quad t,x>0, \] where \(V(x)\) and \(\kappa(z,0)\) are the renewal function for the ascending ladder-height process, and the Laplace exponent of the ascending ladder-time process corresponding to \(X_t\), respectively, and the equality holds up to constants. Under symmetry and some regularity of the characteristic exponent \(\Psi\) of \(X_t\), the above formula takes the very simple form \[ \operatorname P(M_t<x)\approx\min(1,(t\Psi(1/x))^{-1/2}),\quad t,x>0. \] Moreover, an integral representation of the Laplace transform of the distribution function of \(M_t\) is proved if \(X_t\) is symmetric and \(\Psi\) is increasing on the positive half line.

MSC:

60G51 Processes with independent increments; Lévy processes
60E10 Characteristic functions; other transforms
60J75 Jump processes (MSC2010)

References:

[1] Alili, L. and Kyprianou, A. E. (2005). Some remarks on first passage of Lévy processes, the American put and pasting principles. Ann. Appl. Probab. 15 2062-2080. · Zbl 1083.60034 · doi:10.1214/105051605000000377
[2] Barndorff-Nielsen, O. E., Mikosch, T. and Resnick, S. I., eds. (2001). Lévy Processes : Theory and Applications . Birkhäuser, Boston, MA. · Zbl 0961.00012
[3] Baxter, G. and Donsker, M. D. (1957). On the distribution of the supremum functional for processes with stationary independent increments. Trans. Amer. Math. Soc. 85 73-87. · Zbl 0078.32002 · doi:10.2307/1992962
[4] Bernyk, V., Dalang, R. C. and Peskir, G. (2008). The law of the supremum of a stable Lévy process with no negative jumps. Ann. Probab. 36 1777-1789. · Zbl 1185.60051 · doi:10.1214/07-AOP376
[5] Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121 . Cambridge Univ. Press, Cambridge. · Zbl 0861.60003
[6] Bertoin, J. and Doney, R. A. (1997). Spitzer’s condition for random walks and Lévy processes. Ann. Inst. Henri Poincaré Probab. Stat. 33 167-178. · Zbl 0880.60078 · doi:10.1016/S0246-0203(97)80120-3
[7] Bingham, N. H. (1973). Maxima of sums of random variables and suprema of stable processes. Z. Wahrsch. Verw. Gebiete 26 273-296. · Zbl 0238.60036 · doi:10.1007/BF00534892
[8] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Encyclopedia of Mathematics and Its Applications 27 . Cambridge Univ. Press, Cambridge. · Zbl 0617.26001
[9] Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M., Song, R. and Vondraček, Z. (2009). Potential Analysis of Stable Processes and Its Extensions. Lecture Notes in Math. 1980 . Springer, Berlin.
[10] Chen, Z. Q., Kim, P. and Song, R. (2011). Global heat kernel estimates for \(\Delta+\Delta^{\alpha/2}\) in half-space-like domains. Preprint. Available at . 1102.1454v2 · Zbl 1247.60115
[11] Darling, D. A. (1956). The maximum of sums of stable random variables. Trans. Amer. Math. Soc. 83 164-169. · Zbl 0074.34003 · doi:10.2307/1992908
[12] Doney, R. A. (1987). On Wiener-Hopf factorisation and the distribution of extrema for certain stable processes. Ann. Probab. 15 1352-1362. · Zbl 0631.60069 · doi:10.1214/aop/1176991981
[13] Doney, R. A. (2007). Fluctuation Theory for Lévy Processes. Lecture Notes in Math. 1897 . Springer, Berlin. · Zbl 1128.60036
[14] Fristedt, B. (1974). Sample functions of stochastic processes with stationary, independent increments. In Advances in Probability and Related Topics , Vol. 3 241-396. Dekker, New York. · Zbl 0309.60047
[15] Graczyk, P. and Jakubowski, T. (2012). On exit time of symmetric \(\alpha\)-stable processes. Stoch. Process Appl. 122 31-41. · Zbl 1230.60051 · doi:10.1016/j.spa.2011.10.004
[16] Graczyk, P. and Jakubowski, T. (2011). On Wiener-Hopf factors for stable processes. Ann. Inst. Henri Poincaré Probab. Stat. 47 9-19. · Zbl 1208.60044 · doi:10.1214/09-AIHP348
[17] Greenwood, P. E. and Novikov, A. A. (1986). One-sided boundary crossing for processes with independent increments. Teor. Veroyatnost. i Primenen. 31 266-277. · Zbl 0658.60103 · doi:10.1137/1131029
[18] Grzywny, T. and Ryznar, M. (2008). Two-sided optimal bounds for Green functions of half-spaces for relativistic \(\alpha\)-stable process. Potential Anal. 28 201-239. · Zbl 1146.60059 · doi:10.1007/s11118-007-9071-3
[19] Hubalek, F. and Kuznetsov, A. (2011). A convergent series representation for the density of the supremum of a stable process. Electron. Commun. Probab. 16 84-95. · Zbl 1231.60040 · doi:10.1214/ECP.v16-1601
[20] Hurd, T. R. and Kuznetsov, A. (2009). On the first passage time for Brownian motion subordinated by a Lévy process. J. Appl. Probab. 46 181-198. · Zbl 1162.60336 · doi:10.1239/jap/1238592124
[21] Katzav, E. and Adda-Bedia, M. (2008). The spectrum of the fractional Laplacian and First-Passage-Time statistics. EPL 83 30006. · Zbl 1159.35015
[22] Kim, P., Song, R. and Vondraček, Z. (2009). Boundary Harnack principle for subordinate Brownian motions. Stochastic Process. Appl. 119 1601-1631. · Zbl 1166.60046 · doi:10.1016/j.spa.2008.08.003
[23] Kim, P., Song, R. and Vondraček, Z. (2010). On the potential theory of one-dimensional subordinate Brownian motions with continuous components. Potential Anal. 33 153-173. · Zbl 1202.60125 · doi:10.1007/s11118-009-9163-3
[24] Kim, P., Song, R. and Vondraček, Z. (2012). Two-sided Green function estimates for killed subordinate Brownian motions. Proc. Lond. Math. Soc. (3) 104 927-958. · Zbl 1248.60091 · doi:10.1112/plms/pdr050
[25] Kim, P., Song, R. and Vondraček, Z. (2012). Potential theory of subordinate Brownian motions revisited. In Stochastic Analysis and Applications to Finance , Essays in Honour of Jia-an Yan (T. Zhang and X. Zhou, eds.). Interdisciplinary Mathematical Sciences 13 . World Scientific, Singapore. · Zbl 1282.60076
[26] Koren, T., Klafter, J. and Magdziarz, M. (2007). First passage times of Lévy flights coexisting with subdiffusion. Phys. Rev. E 76 031129.
[27] Kuznetsov, A. (2010). Wiener-Hopf factorization and distribution of extrema for a family of Lévy processes. Ann. Appl. Probab. 20 1801-1830. · Zbl 1222.60038 · doi:10.1214/09-AAP673
[28] Kuznetsov, A. (2011). On extrema of stable processes. Ann. Probab. 39 1027-1060. · Zbl 1218.60037 · doi:10.1214/10-AOP577
[29] Kuznetsov, A., Kyprianou, A. E. and Pardo, J. C. (2012). Meromorphic Lévy processes and their fluctuation identities. Ann. Appl. Probab. 22 1101-1135. · Zbl 1252.60044 · doi:10.1214/11-AAP787
[30] Kwaśnicki, M. (2010). Spectral analysis of subordinate Brownian motions on the half-line. Studia Math. 206 211-271. · Zbl 1241.60023
[31] Kyprianou, A. E. (2006). Introductory Lectures on Fluctuations of Lévy Processes with Applications . Springer, Berlin. · Zbl 1104.60001
[32] Pyke, R. (1959). The supremum and infimum of the Poisson process. Ann. Math. Statist. 30 568-576. · Zbl 0089.13602 · doi:10.1214/aoms/1177706269
[33] Sato, K.-i. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68 . Cambridge Univ. Press, Cambridge. · Zbl 0973.60001
[34] Schilling, R. L., Song, R. and Vondraček, Z. (2010). Bernstein Functions : Theory and Applications. de Gruyter Studies in Mathematics 37 . de Gruyter, Berlin.
[35] Silverstein, M. L. (1980). Classification of coharmonic and coinvariant functions for a Lévy process. Ann. Probab. 8 539-575. · Zbl 0459.60063 · doi:10.1214/aop/1176994726
[36] Zolotarev, V. M. (1964). The first-passage time of a level and the behaviour at infinity for a class of processes with independent increments. Theory Probab. Appl. 9 653-664. · Zbl 0149.12903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.