×

Local systems in diffeology. (English) Zbl 07919894

H. Kihara [J. Homotopy Relat. Struct. 14, No. 1, 51–90 (2019; Zbl 1459.58001); Smooth homotopy of infinite-dimensional \(C^{\infty}\)-manifolds. Providence, RI: American Mathematical Society (AMS) (2023; Zbl 1542.58001)] has succeeded in introducing a Quillen model structure on the category \(\mathsf{Diff}\) of diffeological spaces. This paper, by relating the local systems over \(K\left( \pi,1\right) \)-spaces to the model structure of \(\mathsf{Diff}\), proposes a framework of rational homotopy theory for diffeological spaces.
The synopsis of the paper goes as follows.
§ 2
recalls the definition of a diffeological space, summarizing the equivalence between the category \(\mathsf{Set}^{\Delta^{\mathrm{op}}}\)of simplicial sets and [H. Kihara, Smooth homotopy of infinite-dimensional \(C^{\infty}\)-manifolds. Providence, RI: American Mathematical Society (AMS) (2023; Zbl 1542.58001)].
§ 3
recalls crucial results on local systems [A. Gómez-Tato et al., Trans. Am. Math. Soc. 352, No. 4, 1493–1525 (2000; Zbl 0939.55010)], establishing the following theorem.
Theorem. Let \(\mathsf{Ho}\left( \mathsf{Diff}_{\ast}\right) \)be the homotopy category of pointed diffeological spaces with its full subcategory \(\mathsf{fib}\mathbb{Q}\)-\(\mathsf{Ho}\left( \mathsf{Diff}_{\ast}\right) \)of fiberwise rational connected diffeological spaces of finite type. Then there exists an equivalence of categories \[ \mathsf{Ho}\left( \mathcal{M}_{\mathbb{Q}}\right) \overset{\simeq }{\longrightarrow}\mathsf{fib}\mathbb{Q}\text{-}\mathsf{Ho}\left( \mathsf{Diff}_{\ast}\right) \] where \(\mathsf{Ho}\left( \mathcal{M}_{\mathbb{Q}}\right) \)is the homotopy category of minimal local systems.
§ 4
gives examples of local systems associated with relative Sullivan algebras, seeing that a relative Sullivan model for a fibration in \(\mathsf{Set}^{\Delta^{\mathrm{op}}}\)gives rise to the fiberwise localization of a diffeological space via the realization functor \(\left\vert {}\right\vert _{D}\).
§ 5
constructs a spectral sequence converging to the singular de Rham cohomology of a diffeological adjunction space with the pullback of relevant local systems. In case of a stratifold obtained by attaching manifolds, the spectral sequence converges to the Souriau-de Rham cohomology algebra of the diffeological space.
Appendix A
establishes that the functor \(k\)from the category Stfdof stratifolds [M. Kreck, Differential algebraic topology. From stratifolds to exotic spheres. Providence, RI: American Mathematical Society (AMS) (2010; Zbl 1420.57002)] to \(\mathsf{Diff}\)[T. Aoki and K. Kuribayashi, Cah. Topol. Géom. Différ. Catég. 58, No. 2, 131–160 (2017; Zbl 1378.18016)] assigns an adjunction space in \(\mathsf{Diff}\)to a \(p\)-stratifold up to smooth homotopy.
Appendix B
constructs a commutative algebraic model for the unreduced suspension of a connected closed manifold, which was used in §5.

MSC:

18F15 Abstract manifolds and fiber bundles (category-theoretic aspects)
58A35 Stratified sets
58A40 Differential spaces
55U10 Simplicial sets and complexes in algebraic topology
55P62 Rational homotopy theory
55T99 Spectral sequences in algebraic topology

References:

[1] Aoki, T.; Kuribayashi, K., On the category of stratifolds, Cahiers de Topologie et Géométrie Différentielle Catégoriques, 58, 131-160, 2017 · Zbl 1378.18016
[2] Baez, JC; Hoffnung, AE, Convenient categories of smooth spaces, Trans. Am. Math. Soc., 363, 5789-5825, 2011 · Zbl 1237.58006 · doi:10.1090/S0002-9947-2011-05107-X
[3] Bousfield, A.K., Gugenheim, V.K.A.M.: On PL de Rham theory and rational homotopy type. Mem. Am. Math. Soc. 179, 94 (1976) · Zbl 0338.55008
[4] Bousfield, AK; Kan, DM, Homotopy Limits, Completions and Localizations, 1972, Berlin: Springer, Berlin · Zbl 0259.55004 · doi:10.1007/978-3-540-38117-4
[5] Chataur, D.; Scherer, J., Fiberwise localization and the cube theorem, Comment. Math. Helv., 81, 171-189, 2006 · Zbl 1105.55011 · doi:10.4171/cmh/48
[6] Christensen, JD; Sinnamon, G.; Wu, E., The \(D\)-topology for diffeological spaces, Pac. J. Math., 272, 87-110, 2014 · Zbl 1311.57031 · doi:10.2140/pjm.2014.272.87
[7] Christensen, JD; Wu, E., The homotopy theory of diffeological spaces, N. Y. J. Math., 20, 1269-1303, 2014 · Zbl 1325.57013
[8] Christensen, JD; Wu, E., Smooth classifying spaces, Isr. J. Math., 241, 911-954, 2021 · Zbl 1465.57100 · doi:10.1007/s11856-021-2120-6
[9] Félix, Y.; Halperin, S.; Thomas, J-C, Rational Homotopy Theory, 2000, Berlin: Springer, Berlin
[10] Félix, Y.; Halperin, S.; Thomas, J-C, Rational Homotopy Theory II, 2015, Hackensack: World Scientific Publishing Co. Pte. Ltd., Hackensack · Zbl 1325.55001 · doi:10.1142/9473
[11] Félix, Y.; Oprea, J.; Tanré, D., Algebraic Models in Geometry, 2008, Oxford: Oxford University Press, Oxford · Zbl 1149.53002 · doi:10.1093/oso/9780199206513.001.0001
[12] Félix, Y.; Thomas, J-C, Le tor differentiel d’une fibration non nilpotente, J. Pure Appl. Algebra, 38, 217-233, 1985 · Zbl 0574.55008 · doi:10.1016/0022-4049(85)90010-6
[13] Goerss, P.G., Jardine, J.F.: Simplicial Homotopy Theory. Reprint of the 1999 edition. Modern Birkhäuser Classics. Birkhäuser Verlag, Basel (2009)
[14] Gómez-Tato, A.; Halperin, S.; Tanré, D., Rational homotopy theory for non-simply connected spaces, Trans. AMS, 352, 1493-1525, 2000 · Zbl 0939.55010 · doi:10.1090/S0002-9947-99-02463-0
[15] Gürer, S.; Iglesias-Zemmour, P., Differential forms on manifolds with boundary and corners, Indagationes Mathematicae, 30, 920-929, 2019 · Zbl 1425.58002 · doi:10.1016/j.indag.2019.07.004
[16] Halperin, S.: Lectures on minimal models. Mémoires S.M.F. Nouvelle série 9-10 (1983) · Zbl 0536.55003
[17] Hector, G.; Macías-Virgós, E.; Sanmartín-Carbón, E., De Rham cohomology of diffeological spaces and foliations, Indag. Math., 21, 212-220, 2011 · Zbl 1226.57041 · doi:10.1016/j.indag.2011.04.004
[18] Hovey, M., Model Categories, 1999, Providence: American Mathematical Society, Providence · Zbl 0909.55001
[19] Iglesias, P.: Fibrés difféologiques et homotopie. Thèse de doctorat d’état, Université de Provence, Marseille (1985)
[20] Iglesias-Zemmour, P., Diffeology, Mathematical Surveys and Monographs, 2012, Providence: AMS, Providence
[21] Iglesias-Zemmour, P.; Karshon, Y.; Zadka, M., Orbifolds as diffeologies, Trans. AMS, 362, 2811-2831, 2010 · Zbl 1197.57025 · doi:10.1090/S0002-9947-10-05006-3
[22] Ivanov, SO, An overview of rationalization theories of non-simply connected spaces and non-nilpotent groups, Acta Math. Sin. Engl. Ser., 38, 1705-1721, 2022 · Zbl 1501.55001 · doi:10.1007/s10114-022-2063-9
[23] Iwase, N., Whitney approximation for smooth CW complex, Kyushu J. Math., 76, 177-186, 2022 · Zbl 1497.57037 · doi:10.2206/kyushujm.76.177
[24] Iwase, N.; Izumida, N.; Singh, M.; Song, Y.; Wu, J., Mayer-Vietoris sequence for differentiable/diffeological spaces, Algebraic Topology and Related Topics, 123-151, 2019, Basel: Birkhäuser, Basel · Zbl 1419.58005 · doi:10.1007/978-981-13-5742-8_8
[25] Jardine, J.F.: Lectures on Homotopy Theory. https://www.math.uwo.ca/faculty/jardine/courses/homth/homotopy_theory.html
[26] Kieboom, RW, A pullback theorem for cofibrations, Manuscr. Math., 58, 381-384, 1987 · Zbl 0617.55002 · doi:10.1007/BF01165895
[27] Kihara, H., Model category of diffeological spaces, H. J. Homotopy Relat. Struct., 14, 51-90, 2019 · Zbl 1459.58001 · doi:10.1007/s40062-018-0209-3
[28] Kihara, H.: Smooth Homotopy of Infinite-Dimensional \(C^\infty \)-Manifolds. Memoirs of the American Mathematical Society, vol. 1436. American Mathematical Society (AMS), Providence (2023) · Zbl 1542.58001
[29] Kihara, H.: Smooth singular complexes and diffeological principal bundles. Algebr. Geom. Topol. (to appear). Preprint (2022). arXiv:2202.00131
[30] Kreck, M.: Differential Algebraic Topology, from Stratifolds to Exotic Spheres. Graduate Studies in Mathematics, vol. 110. AMS, Providence (2010) · Zbl 1420.57002
[31] Kuribayashi, K., Simplicial cochain algebras for diffeological spaces, Indagationes Mathematicae, 31, 934-967, 2020 · Zbl 1473.58002 · doi:10.1016/j.indag.2020.08.002
[32] Kuribayashi, K.: On multiplicative spectral sequences for nerves and the free loop spaces. Topol. Appl. 352, 108958 (2024). doi:10.1016/j.topol.2024.108958 · Zbl 1543.55012
[33] Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic, A First Introduction to Topos Theory. Corrected Reprint of the 1992 edition. Universitext. Springer, New York (1994)
[34] Magnot, JP; Watts, J., The diffeology of Milnor’s classifying space, Topol. Appl., 232, 189-213, 2017 · Zbl 1457.53014 · doi:10.1016/j.topol.2017.10.011
[35] Mather, M., Pull-backs in homotopy theory, Can. J. Math., 28, 225-263, 1976 · Zbl 0351.55005 · doi:10.4153/CJM-1976-029-0
[36] McAuley, PT, A note of paired fibrations, Proc. AMS, 34, 534-540, 1972 · Zbl 0268.55013 · doi:10.2307/2038402
[37] Moriya, S., The de Rham homotopy theory and differential graded category, Math. Z., 271, 961-1010, 2012 · Zbl 1258.55006 · doi:10.1007/s00209-011-0899-2
[38] Pervova, E.: Diffeological De Rham operators. Preprint (2017). arXiv:1703.01404
[39] Quillen, D., Homotopical Algebra, 1967, Berlin: Springer, Berlin · Zbl 0168.20903
[40] Quillen, D., Rational homotopy theory, Ann. Math., 90, 205-295, 1969 · Zbl 0191.53702 · doi:10.2307/1970725
[41] Rivera, M.; Wierstra, F.; Zeinalian, M., Rational homotopy equivalences and singular chains, Algebr. Geom. Topol., 21, 1535-1552, 2021 · Zbl 1475.55015 · doi:10.2140/agt.2021.21.1535
[42] Simakawa, K.; Yoshida, K.; Hraguchi, T., Homology and cohomology via enriched bifunctors, Kyushu J. Math., 72, 239-252, 2018 · Zbl 1408.55003 · doi:10.2206/kyushujm.72.239
[43] Sikorski, R., Differential modules, Colloq. Math., 24, 45-79, 1971 · Zbl 0226.53004 · doi:10.4064/cm-24-1-45-79
[44] Souriau, J.-M.: Groupes différentiels. Lecture Notes in Mathematics, vol. 836, pp. 91-128. Springer, Berlin (1980) · Zbl 0501.58010
[45] Sullivan, D., Infinitesimal computations in topology, Publ. I.H.E.S, 47, 269-331, 1977 · Zbl 0374.57002
[46] Watts, J., Wolbert, S.: Diffeological coarse moduli spaces of stacks over manifolds. Preprint (2019). arXiv:1406.1392v4
[47] Whitehead, GW, Elements of Homotopy Theory, 1978, New York: Springer, New York · Zbl 0406.55001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.