×

Omega diffusion risk model with surplus-dependent tax and capital injections. (English) Zbl 1369.91080

Summary: In this paper, we propose and study an Omega risk model with a constant bankruptcy function, surplus-dependent tax payments and capital injections in a time-homogeneous diffusion setting. The surplus value process is both refracted (paying tax) at its running maximum and reflected (injecting capital) at a lower constant boundary. The new model incorporates practical features from the Omega risk model [H. Albrecher et al., Eur. Actuar. J. 1, No. 1, 43–55 (2011; Zbl 1219.91062)], the risk model with tax [H. Albrecher and C. Hipp, Bl. DGVFM 28, No. 1, 13–28 (2007; Zbl 1119.62103)], and the risk model with capital injections [H. Albrecher and J. Ivanovs, Stoch. Syst. 4, No. 1, 157–172 (2014; Zbl 1300.60067)]. The study of this new risk model is closely related to the Azéma-Yor process, which is a process refracted by its running maximum. We explicitly characterize the Laplace transform of the occupation time of an Azéma-Yor process below a constant level until the first passage time of another Azéma-Yor process or until an independent exponential time. We also consider the case when the process has a lower reflecting boundary. This result unifies and extends recent results of B. Li and X. Zhou [Adv. Appl. Probab. 45, No. 4, 1049–1067 (2013; Zbl 1370.60136)] and H. Zhang [Adv. Appl. Probab. 47, No. 1, 210–230 (2015; Zbl 1310.60114)]. We explicitly characterize the Laplace transform of the time of bankruptcy in the Omega risk model with tax and capital injections up to eigen-functions, and determine the expected present value of tax payments until default. We also discuss a further extension to occupation functionals through stochastic time-change, which handles the case of a non-constant bankruptcy function. Finally we present examples using a Brownian motion with drift, and discuss the pricing of quantile options written on the Azéma-Yor process.

MSC:

91B30 Risk theory, insurance (MSC2010)
60G51 Processes with independent increments; Lévy processes
Full Text: DOI

References:

[1] Albrecher, H.; Cheung, C.; Thonhauser, S., Randomized observation periods for the compound Poisson risk model: Dividends, ASTIN Bull., 41, 2, 645-672 (2011) · Zbl 1239.91072
[2] Albrecher, H.; Cheung, C.; Thonhauser, S., Randomized observation periods for the compound Poisson risk model: the discounted penalty function, Scand. Actuar. J., 6, 424-452 (2013) · Zbl 1401.91089
[3] Albrecher, H.; Gerber, H.; Shiu, E., The optimal dividend barrier in the Gamma-Omega model, Eur. Actuar. J., 1, 43-55 (2011) · Zbl 1219.91062
[4] Albrecher, H.; Hipp, C., Lundberg’s risk process with tax, Blätter der DGVFM, 28, 1, 13-28 (2007) · Zbl 1119.62103
[5] Albrecher, H.; Ivanovs, J., Power identities for Lévy risk models under taxation and capital injections, Stoch. Syst., 4, 1, 157-172 (2014) · Zbl 1300.60067
[6] Azéma, J.; Yor, M., Une solution simple au probleme de Skorokhod, (Seminaire de Probabilités, Vol. 721 (1979), Springer: Springer Berlin), 90-115 · Zbl 0414.60055
[7] Borodin, A.; Salminen, P., Handbook of Brownian Motion-Facts and Formulae (2002), Birkhäuser · Zbl 1012.60003
[8] Carr, P.; Zhang, H.; Hadjiliadis, O., Maximum drawdown insurance, and drawdowns, J. Theor. Appl. Finance, 14, 3, 1195-1230 (2011) · Zbl 1233.91115
[9] Cheridito, P.; Nikeghbali, A.; Platen, E., Processes of class Sigma, last passage times, and drawdowns, SIAM J. Financ. Math., 3, 1, 280-303 (2012) · Zbl 1284.91542
[10] Cui, Z.; Ma, J., Stochastic areas of diffusions and applications, J. Math. Anal. Appl., 436, 1, 79-93 (2016) · Zbl 1409.91132
[11] Gerber, H.; Shiu, E., On the time value of ruin, N. Am. Actuar. J., 2, 1, 48-72 (1998)
[12] Gihman, I.; Skorohod, A., Stochastic Differential Equations (1972), Springer · Zbl 0242.60003
[14] Hadjiliadis, O.; Vecer, J., Drawdowns preceding rallies in a Brownian motion model, Quant. Finance, 6, 5, 403-409 (2006) · Zbl 1134.91420
[15] Harrison, J. M., Brownian Motion and Stochastic Flow Systems (1985), Wiley: Wiley New York · Zbl 0659.60112
[16] Hulley, H.; Platen, E., Laplace transform identities for diffusions, with applications to rebates and barrier options, Adv. Math. Finance, 83, 139-157 (2008) · Zbl 1153.60381
[17] Karatzas, I.; Shreve, S., (Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, vol. 113 (1991), Springer: Springer New York) · Zbl 0734.60060
[18] Kyprianou, A.; Loeffen, R., Refracted Lévy processes, Ann. Inst. H. Poincaré Probab. Statist., 46, 1, 24-44 (2010) · Zbl 1201.60042
[19] Kyprianou, A.; Pardo, J.; Pérez, J., Occupation times of refracted Lévy processes, J. Theoret. Probab., 27, 4, 1292-1315 (2014) · Zbl 1306.60049
[20] Kyprianou, A.; Zhou, X., General tax structures and the Lévy insurance risk model, J. Appl. Probab., 46, 4, 1146-1156 (2009) · Zbl 1210.60098
[21] Landriault, D.; Renaud, J.; Zhou, X., Occupation times of spectrally negative Lévy processes with applications, Stochastic Process. Appl., 121, 11, 2629-2641 (2011) · Zbl 1227.60061
[22] Landriault, D.; Renaud, J.; Zhou, X., An insurance risk model with Parisian implementation delays, Methodol. Comput. Appl. Probab., 16, 583-607 (2014) · Zbl 1319.60098
[23] Lehoczky, J., Formulas for stoopped diffusion processes with stopping times based on the maximum, Ann. Probab., 5, 4, 601-607 (1977) · Zbl 0367.60093
[24] Li, B., Look-back stopping times and their applications to liquidation risk and exotic options (2013), University of Iowa, (Ph.D. thesis)
[25] Li, B.; Tang, Q.; Zhou, X., A time-homogeneous diffusion model with tax, J. Appl. Probab., 50, 1, 195-207 (2013) · Zbl 1271.62246
[26] Li, B.; Zhou, X., The joint Laplace transforms for diffusion occupation times, Adv. Appl. Probab., 45, 4, 1049-1067 (2013) · Zbl 1370.60136
[27] Loeffen, R.; Renaud, J.; Zhou, X., Occupation times of intervals until first passage times for spectrally negative Lévy processes, Stochastic Process. Appl., 124, 3, 1408-1435 (2014) · Zbl 1287.60062
[29] Petrella, G., An extension of the Euler Laplace transform inversion algorithm with applications in option pricing, Oper. Res. Lett., 380-389 (2004) · Zbl 1063.65143
[30] Poor, H. V.; Hadjiliadis, O., Quickest Detection (2008), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1393.60039
[31] Pospisil, L.; Vecer, J., PDE methods for the maximum drawdown, J. Comput. Finance, 12, 2, 59-76 (2009) · Zbl 1175.91200
[32] Pospisil, L.; Vecer, J.; Hadjiliadis, O., Formulas for stopped diffusion processes with stopping times based on drawdowns and drawups, Stochastic Process. Appl., 119, 8, 2563-2578 (2009) · Zbl 1167.91374
[33] Renaud, J., The distribution of tax payments in a Lévy insurance risk model with a surplus-dependent taxation structure, Insurance Math. Econom., 45, 242-246 (2009) · Zbl 1231.91230
[34] Renaud, J., On the time spent in the red by a refracted Lévy risk process, J. Appl. Probab., 51, 1171-1188 (2014) · Zbl 1321.60099
[35] Valko, P.; Abate, J., Numerical inversion of 2-D Laplace transforms applied to fractional diffusion equations, Appl. Numer. Math., 73-88 (2005) · Zbl 1060.65681
[36] Zhang, H., Drawdowns, drawups, and their applications (2010), City University of New York, (Ph.D. thesis)
[37] Zhang, H., Occupation time, drawdowns, and drawups for one-dimensional regular diffusion, Adv. Appl. Probab., 47, 1, 210-230 (2015) · Zbl 1310.60114
[38] Zhang, H.; Hadjiliadis, O., Drawdowns and rallies in a finite time-horizon, Methodol. Comput. Appl. Probab., 12, 2, 293-308 (2010) · Zbl 1202.60071
[39] Zhang, H.; Hadjiliadis, O., Drawdowns and the speed of a market crash, Methodol. Comput. Appl. Probab., 14, 8, 739-752 (2012) · Zbl 1282.91396
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.