×

Occupation times, drawdowns, and drawups for one-dimensional regular diffusions. (English) Zbl 1310.60114

Summary: The drawdown process of a one-dimensional regular diffusion process \(X\) is given by \(X\) reflected at its running maximum. The drawup process is given by \(X\) reflected at its running minimum. We calculate the probability that a drawdown precedes a drawup in an exponential time-horizon. We then study the law of the occupation times of the drawdown process and the drawup process. These results are applied to address problems in risk analysis and for option pricing of the drawdown process. Finally, we present examples of Brownian motion with drift and three-dimensional Bessel processes, where we prove an identity in law.

MSC:

60J60 Diffusion processes
60G17 Sample path properties

References:

[1] Albrecher, H., Gerber, H. U. and Shiu, E. S. W. (2011). The optimal dividend barrier in the gamma-omega model. Europ. Actuarial J. 1 , 43-55. · Zbl 1219.91062 · doi:10.1007/s13385-011-0006-4
[2] Borodin, A. N. and Salminen, P. (2002). Handbook of Brownian Motion–Facts and Formulae , 2nd edn. Birkhauser, Basel. · Zbl 1012.60003
[3] Cai, N., Chen, N. and Wan, X. (2010). Occupation times of jump-diffusion processes with double exponential jumps and the pricing of options. Math. Operat. Res. 35 , 412-437. · Zbl 1218.60068 · doi:10.1287/moor.1100.0447
[4] Carr, P., Zhang, H. and Hadjiliadis, O. (2011). Maximum drawdown insurance. Internat. J. Theoret. Appl. Finance 14 , 1195-1230. · Zbl 1233.91115 · doi:10.1142/S0219024911006826
[5] Cheridito, P., Nikeghbali, A. and Platen, E. (2012). Processes of class sigma, last passage times, and drawdowns. SIAM J. Financial Math. 3 , 280-303. · Zbl 1284.91542 · doi:10.1137/09077878X
[6] Chesney, M., Jeanblanc-Picque, M. and Yor, M. (1997). Brownian excursions and Parisian barrier options. Adv. Appl. prob. 29 , 165-184. · Zbl 0882.60042 · doi:10.2307/1427865
[7] Forde, M., Pogudin, A. and Zhang, H. (2013). Hitting times, occupation times, trivariate laws and the forward Kolmogorov equation for a one-dimensional diffusion with memory. Adv. Appl. Prob. 45 , 860-875. · Zbl 1287.60095 · doi:10.1239/aap/1377868542
[8] Gerber, H. U., Shiu, E. S. W. and Yang, H. (2012). The Omega model: from bankruptcy to occupation times in the red. Europ. Actuarial J. 2 , 259-272. · Zbl 1256.91057 · doi:10.1007/s13385-012-0052-6
[9] Grossman, S. J. and Zhou, Z. (1993). Optimal investment strategies for controlling drawdowns. Math. Finance 3 , 241-276. · Zbl 0884.90031 · doi:10.1111/j.1467-9965.1993.tb00044.x
[10] Hadjiliadis, O. and Večeř, J. (2006). Drawdowns preceding rallies in the Brownian motion model. Quant. Finance 6 , 403-409. · Zbl 1134.91420 · doi:10.1080/14697680600764227
[11] Hadjiliadis, O., Zhang, H. and Poor, H. V. (2009). One shot schemes for decentralized quickest change detection. IEEE Trans. Inf. Theory 55 , 3346-3359. · Zbl 1367.94115 · doi:10.1109/TIT.2009.2021311
[12] Kyprianou, A. E., Pardo, J. C. and Pérez, J. L. (2013). Occupation times of refracted Lévy processes. J. Theoret. Prob. 10.1007/s10959-013-0501-4. · Zbl 1306.60049
[13] Landriault, D., Renaud, J.-F. and Zhou, X. (2011). Occupation times of spectrally negative Lévy processes with applications. Stoch. Process. Appl. 121 , 2629-2641. · Zbl 1227.60061 · doi:10.1016/j.spa.2011.07.008
[14] Lehoczky, J. P. (1977). Formulas for stopped diffusion processes with stopping times based on the maximum. Ann. Prob. 5 , 601-607. · Zbl 0367.60093 · doi:10.1214/aop/1176995770
[15] Li, B. and Zhou, X. (2013). The joint Laplace transforms for diffusion occupation times. Adv. Appl. Prob. 45 , 1049-1067. · Zbl 1370.60136 · doi:10.1239/aap/1386857857
[16] Magdon-Ismail, M. and Atiya, A. (2004). Maximum drawdown. Risk 17 , 99-102. · Zbl 1051.60083
[17] Meilijson, I. (2003). The time to a given drawdown in Brownian motion. In Séminaire de Probabilités XXXVII (Lecture Notes Math. 1832 ), Springer, Berlin, pp. 94-108. · Zbl 1041.60065
[18] Mijatović, A. and Pistorius, M. R. (2012). On the drawdown of completely asymmetric Lévy processes. Stoch. Process. Appl. 122 , 3812-3836. · Zbl 1252.60046 · doi:10.1016/j.spa.2012.06.012
[19] Miura, R. (1992). A note on look-back options based on order statistics. Hitotsubashi J. Commerce Manag. 27 , 15-28.
[20] Miura, R. (2007). Rank process, stochastic corridor and applications to finance. In Advances in Statistical Modeling and Inference (Ser. Biostat. 3 ), World Scientific, Hackensack, NJ, pp. 529-542. · doi:10.1142/9789812708298_0026
[21] Peskir, G. (1998). Optimal stopping of the maximum process: the maximality principle. Ann. Prob. 26 , 1614-1640. · Zbl 0935.60025 · doi:10.1214/aop/1022855875
[22] Pitman, J. and Yor, M. (1999). Laplace transforms related to excursions of a one-dimensional diffusion. Bernoulli 5 , 249-255. · Zbl 0921.60015 · doi:10.2307/3318434
[23] Pitman, J. and Yor, M. (2003). Hitting, occupation and inverse local times of one-dimensional diffusions: martingale and excursion approaches. Bernoulli 9 , 1-24. · Zbl 1024.60032 · doi:10.3150/bj/1068129008
[24] Poor, H. V. and Hadjiliadis, O. (2009). Quickest Detection . Cambridge University Press. · Zbl 1271.62015 · doi:10.1017/CBO9780511754678
[25] Pospisil, L. and Vecer, J. (2008). PDE methods for the maximum drawdown. J. Comput. Finance 12 , 59-76. · Zbl 1175.91200
[26] Pospisil, L. and Vecer, J. (2010). Portfolio sensitivity to changes in the maximum and the maximum drawdown. Quant. Finance 10 , 617-627. · Zbl 1192.91184 · doi:10.1080/14697680903008751
[27] Pospisil, L., Vecer, J. and Hadjiliadis, O. (2009). Formulas for stopped diffusion processes with stopping times based on drawdowns and drawups. Stoch. Process. Appl. 119 , 2563-2578. · Zbl 1167.91374 · doi:10.1016/j.spa.2009.01.002
[28] Protter, P. E. (2004). Stochastic Integration and Differential Equations , 2nd edn. Springer, Berlin. · Zbl 1041.60005
[29] Salminen, P. and Vallois, P. (2007). On maximum increase and decrease of Brownian motion. Ann. Inst. H. Poincaré B Prob. Statis. 43 , 655-676. · Zbl 1173.60338 · doi:10.1016/j.anihpb.2006.09.007
[30] Shepp, L. and Shiryaev, A. N. (1993). The Russian option: reduced regret. Ann. Appl. Prob. 3 , 631-640. · Zbl 0783.90011 · doi:10.1214/aoap/1177005355
[31] Shiryaev, A. N. (1996). Minimax optimality of the method of cumulative sums (CUSUM) in the continuous time case. Russian Math. Surveys 51 , 750-751. · Zbl 0882.62076 · doi:10.1070/RM1996v051n04ABEH002986
[32] Vecer, J. (2006). Maximum draw-down and directional trading. Risk 19 , 88-92.
[33] Vecer, J. (2007). Preventing portfolio losses by hedging maximum drawdown. Wilmott 5 , 1-8.
[34] Yamamoto, K., Sato, S. and Takahashi, A. (2010). Probability distribution and option pricing for drawdown in a stochastic volatility environment. Internat. J. Theoret. Appl. Finance 13 , 335-354. · Zbl 1203.91299 · doi:10.1142/S0219024910005796
[35] Zhang, H. (2010). Drawdowns, drawups, and their applications. Doctoral Thesis, City University of New York.
[36] Zhang, H. and Hadjiliadis, O. (2010). Drawdowns and rallies in a finite time-horizon. Methodol. Comput. Appl. Prob. 12 , 293-308. · Zbl 1202.60071 · doi:10.1007/s11009-009-9139-1
[37] Zhang, H. and Hadjiliadis, O. (2012). Drawdowns and the speed of market crash. Methodol. Comput. Appl. Prob. 14 , 739-752. · Zbl 1282.91396 · doi:10.1007/s11009-011-9262-7
[38] Zhang, H. and Hadjiliadis, O. (2012). Quickest detection in a system with correlated noise. In Proc. 51st IEEE Conf. Decision Control , IEEE, New York, pp. 4757-4763.
[39] Zhang, H., Leung, T. and Hadjiliadis, O. (2013). Stochastic modeling and fair valuation of drawdown insurance. Insurance Math. Econom. 53 , 840-850. · Zbl 1290.91105 · doi:10.1016/j.insmatheco.2013.10.006
[40] Zhang, H., Hadjiliadis, O., Schäfer, T. and Poor, H. V. (2014). Quickest detection in coupled systems. SIAM J. Control Optimization 52 , 1567-1596. · Zbl 1297.62181 · doi:10.1137/100810423
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.