×

Interior regularity criteria for suitable weak solutions of the Navier-Stokes equations. (English) Zbl 1126.35042

Some interior regularity criteria for suitable weak solutions to the 3-D Navier-Stokes equations
\[ \frac{\partial v}{\partial t}+(v\cdot\nabla)v-\Delta v+\nabla p=f,\quad \text{div}\,v=0, \quad x\in \Omega,\;t\in I, \] are studied in the paper. Here \(v=(v_1,v_2,v_3)\) is the velocity of a fluid, \(p\) is the pressure, \(\Omega\) is either a domain in \(\mathbb R^3\) or the 3-D torus \(T^3\), \(I\) is a finite time interval.
Let \(z=(x,t)\in \Omega\times I\) and \(Q_{z,r}=B_r\times(t-r^2,t)\), \(\alpha=\frac{3}{s}+\frac{2}{q}\), \(B_r=\{y\in\mathbb R^3:| y-x| <r\}\). It is proved that the suitable weak solutions \((v,p)\) of the problem are regular at \(z\) if one of the following conditions hold for a small constant \(\varepsilon\):
\[ \lim_{r\to 0}\sup r^{-\alpha+1}\| v-(v)_r\|_{L^{s,q}}\leq\varepsilon,\tag{i} \] where \((v)_r\) is the average on \(B_r\), \(1\leq\alpha\leq 2\), \(1\leq s,q\leq\infty\); \[ \lim_{r\to 0}\sup r^{-\alpha+2}\| \nabla v\|_{L^{s,q}}\leq\varepsilon,\quad 2\leq\alpha\leq 3,\quad 1\leq q\leq\infty;\tag{ii} \]
\[ \lim_{r\to 0}\sup r^{-\alpha+2}\| \text{curl}\, v\|_{L^{s,q}}\leq\varepsilon,\quad 2\leq\alpha\leq 3,\quad 1\leq q\leq\infty;\tag{iii} \]
\[ \lim_{r\to 0}\sup r^{-\alpha+3}\| \nabla\text{curl}\, v\|_{L^{s,q}}\leq\varepsilon,\quad 3\leq\alpha\leq 4,\quad 1\leq q,\quad 1\leq s.\tag{iv} \]
There are several corrections made to the authors’ paper [J. Differ. Equations 226, 594–618 (2006; Zbl 1159.35396)].

MSC:

35Q30 Navier-Stokes equations
35B65 Smoothness and regularity of solutions to PDEs
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids

Citations:

Zbl 1159.35396

References:

[1] Beirão da Veiga, H., A new regularity class for the Navier-Stokes equations in \({\mathbb{R}^n} \), Chin. Ann. of Math., 16, B, 4, 407-412 (1995) · Zbl 0837.35111
[2] Caffarelli, L.; Kohn, R.; Nirenberg, L., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35, 771-831 (1982) · Zbl 0509.35067 · doi:10.1002/cpa.3160350604
[3] Chae, D., Kang, K., Lee, J.: On the interior regularity of suitable weak solutions to the Navier-Stokes equations. Comm. Partial Differ. Eqs. (accepted) · Zbl 1130.35101
[4] Chen, Z.-M.; Price, W. G., Blow-up rate estimates for weak solutions of the Navier-Stokes equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457, 2015, 2625-2642 (2001) · Zbl 1009.76015 · doi:10.1098/rspa.2001.0854
[5] Choe, H.; Lewis, J. L., On the singular set in the Navier-Stokes equations, J. Funct. Anal., 175, 2, 348-369 (2000) · Zbl 0965.35115 · doi:10.1006/jfan.2000.3582
[6] Constantin, P., Navier-Stokes equations and Area of Interfaces, Commun. Math. Phys., 129, 241-266 (1990) · Zbl 0725.35080 · doi:10.1007/BF02096982
[7] Escauriaza, L.; Seregin, G.; Šverák, V., L 3,∞-solutions of Navier-Stokes equations and backward uniqueness, Usp. Mat. Nauk, 58, 350, 3-44 (2003)
[8] Fabes, E. B.; Jones, B. F.; Riviére, N. M., The initial value problem for the Navier-Stokes equations with data in L^p, Arch. Ration. Mech. Anal., 45, 222-240 (1972) · Zbl 0254.35097 · doi:10.1007/BF00281533
[9] Giga, Y., Solutions for semilinear parabolic equations in L^p and regularity of weak solutions of the Navier-Stokes system, J. Differ Eqs., 62, 2, 186-212 (1986) · Zbl 0577.35058 · doi:10.1016/0022-0396(86)90096-3
[10] Gustafson, S.; Kang, K.; Tsai, T.-P., Regularity criteria for suitable weak solutions of the Navier-Stokes equations near the boundary, J. Differ. Eqs., 226, 594-618 (2006) · Zbl 1159.35396 · doi:10.1016/j.jde.2005.12.007
[11] Hopf, E., Über die Anfangswertaufgabe fr die hydrodynamischen Grundgleichungen, Math. Nachr., 4, 213-231 (1951) · Zbl 0042.10604
[12] Kang, K., On boundary regularity of the Navier-Stokes equations, Comm. Partial Differ. Eqs., 29, 7-8, 955-987 (2004) · Zbl 1091.76012 · doi:10.1081/PDE-200033743
[13] Kozono, H., Removable singularities of weak solutions to the Navier-Stokes equations, Comm. Partial Differ. Eqs., 23, 5-6, 949-966 (1998) · Zbl 0910.35090
[14] Kozono, H., Weak solutions of the Navier-Stokes equations with test functions in the weak-L^n space, Tohoku Math J. (2), 53, 55-79 (2001) · Zbl 0997.35047
[15] Ladyzenskaja, O. A., Uniqueness and smoothness of generalized solutions of Navier-Stokes equations, (Russian) Zap, Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 5, 169-185 (1967) · Zbl 0194.12805
[16] Ladyzenskaja, O. A.; Seregin, G. A., On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations, J. Math. Fluid Mech., 1, 356-387 (1999) · Zbl 0954.35129 · doi:10.1007/s000210050015
[17] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 64, 193-248 (1934) · JFM 60.0726.05 · doi:10.1007/BF02547354
[18] Lin, F.-H., A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51, 3, 241-257 (1998) · Zbl 0958.35102 · doi:10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A
[19] Nečas, J.; Růzička, M.; Šverák, V., On Leray’s self-similar solutions of the Navier-Stokes equations, Acta Math., 176, 2, 283-294 (1996) · Zbl 0884.35115 · doi:10.1007/BF02551584
[20] Prodi, G., Un teorema di unicita per le equazioni di Navier-Stokes (Italian), Ann. Mat. Pura Appl., 48, 4, 173-182 (1959) · Zbl 0148.08202
[21] Scheffer, V., Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math., 66, 2, 535-552 (1976) · Zbl 0325.35064
[22] Scheffer, V., Hausdorff measure and the Navier-Stokes equations, Commun. Math. Phys., 55, 97-112 (1977) · Zbl 0357.35071 · doi:10.1007/BF01626512
[23] Scheffer, V., The Navier-Stokes equations on a bounded domain, Commun. Math. Phys., 73, 1, 1-42 (1980) · Zbl 0451.35048 · doi:10.1007/BF01942692
[24] Scheffer, V., Boundary regularity for the Navier-Stokes equations in a half-space, Commun. Math. Phys., 85, 2, 275-299 (1982) · Zbl 0508.35067 · doi:10.1007/BF01254460
[25] Scheffer, V., A solution to the Navier-Stokes inequality with an internal singularity, Commun. Math. Phys., 101, 1, 47-85 (1985) · Zbl 0578.76025 · doi:10.1007/BF01212356
[26] Scheffer, V., Nearly one-dimensional singularities of solutions to the Navier-Stokes inequality, Commun. Math. Phys., 110, 4, 525-551 (1987) · Zbl 0653.35072 · doi:10.1007/BF01205547
[27] Seregin, G. A., Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary, J. Math. Fluid Mech., 4, 1, 1-29 (2002) · Zbl 0997.35044 · doi:10.1007/s00021-002-8533-z
[28] Seregin, G. A., On Smoothness of L_3,∞-Solutions to the Navier-Stokes Equations up to Boundary, Math. Ann., 332, 1, 219-238 (2005) · Zbl 1072.35146 · doi:10.1007/s00208-004-0625-z
[29] Seregin, G.A., Shilkin, T.N., Solonnikov, V.A.: Boundary partial regularity for the Navier-Stokes equations. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 34, 158-190, 228; translation in J. Math. Sci. (N. Y.) 132(3), 339-358 (2006) · Zbl 1095.35031
[30] Seregin, G. A.; Sverak, V., Navier-Stokes equations with lower bounds on the pressure, Ration. Mech. Anal., 163, 1, 65-86 (2002) · Zbl 1002.35094 · doi:10.1007/s002050200199
[31] Serrin, J., On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 9, 187-195 (1962) · Zbl 0106.18302 · doi:10.1007/BF00253344
[32] Serrin, J.: The initial value problem for the Navier-Stokes equations. In: 1963 Nonlinear Problems, Proc. Sympos., Madison, Wis., Madison, WI: Univ. of Wisconsin Press, 1963, pp. 69-98 · Zbl 0115.08502
[33] Sohr, H., Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes, Math. Z., 184, 3, 359-375 (1983) · Zbl 0506.35084 · doi:10.1007/BF01163510
[34] Sohr, H., A regularity class for the Navier-Stokes equations in Lorentz spaces, J. Evol. Equ., 1, 4, 441-467 (2001) · Zbl 1007.35051 · doi:10.1007/PL00001382
[35] Sohr, H., Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes, Math. Z., 184, 3, 359-375 (1983) · Zbl 0506.35084 · doi:10.1007/BF01163510
[36] Solonnikov, V.A.: Estimates of solutions of the Stokes equations in S. L. Sobolev spaces with a mixed norm. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 288, 204-231 (2002)
[37] Struwe, M., On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41, 437-458 (1988) · Zbl 0632.76034 · doi:10.1002/cpa.3160410404
[38] Takahashi, S., On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscripta Math., 69, 3, 237-254 (1990) · Zbl 0718.35022 · doi:10.1007/BF02567922
[39] Tian, G.; Xin, Z., Gradient estimation on Navier-Stokes equations, Comm. Anal. Geom., 7, 2, 221-257 (1999) · Zbl 0939.35139
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.