×

Boundedness in a quasilinear two-species chemotaxis system with nonlinear sensitivity and nonlinear signal secretion. (English) Zbl 1486.35087

In this paper, the authors considered the following quasilinear chemotaxis model with nonlinear sensitivity, Lotka-Volterra competitive kinetics and nonlinear signal production \begin{align*} &u_t=\nabla\cdot(D_1(u)\nabla u)-\nabla\cdot(S_1(u)\nabla v)+\mu_1 u(1-u^{\alpha_1}-a_1w), &&x\in \Omega,t>0, \\ &\tau v_t=\Delta v-v+w^{\gamma_1}, &&x\in \Omega,t>0, \\ &w_t=\nabla\cdot(D_2(w)\nabla w)-\nabla\cdot(S_2(w)\nabla z)+\mu_2 w(1-w^{\alpha_2}-a_2u), &&x\in \Omega,t>0, \\ &\tau z_t=\Delta z-z+u^{\gamma_2}, &&x\in \Omega,t>0, \\ &\frac{\partial u}{\partial\mu}=\frac{\partial v}{\partial\mu}=\frac{\partial w}{\partial\mu}=\frac{\partial z}{\partial\mu}=0, &&x\in \partial\Omega,t>0, \\ &u(x,0)=u_0(x), \tau v(x,0)=\tau v_0(x), w(x,0)=w_0(x), \tau z(x,0)=\tau z_0(x), && x\in\Omega. \end{align*} Under appropriate regularity assumption on the initial data, the global boundedness of classical solution is obtained.

MSC:

35B45 A priori estimates in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Bai, X.; Winkler, M., Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65, 553-583 (2016) · Zbl 1345.35117
[2] Bellomo, N.; Bellouquid, A.; Tao, Y.; Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25, 1663-1763 (2015) · Zbl 1326.35397
[3] Black, T., Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals, Discrete Contin. Dyn. Syst., Ser. B, 22, 4, 1253-1272 (2017) · Zbl 1360.35084
[4] Black, T.; Lankeit, J.; Mizukami, M., On the weakly competitive case in a two-species chemotaxis model, IMA J. Appl. Math., 81, 860-876 (2016) · Zbl 1404.35033
[5] Chaplain, M.; Stuart, A., A model mechanism for the chemotactic response of endothelial cells to tumor angiogenesis factor, IMA J. Math. Appl. Med. Biol., 10, 149-168 (1993) · Zbl 0783.92019
[6] Ding, M.; Wang, W.; Zhou, S.; Zheng, S., Asymptotic stability in a fully parabolic quasilinear chemotaxis model with general logistic source and signal production, J. Differ. Equ., 268, 6729-6777 (2020) · Zbl 1435.35197
[7] Höfer, H.; Sherratt, J.; Maini, P., Cellular pattern formation during Dictyostelium aggregation, Physica D, 85, 425-444 (1995) · Zbl 0888.92005
[8] Horstmann, D.; Winkler, M., Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215, 52-107 (2005) · Zbl 1085.35065
[9] Jin, Y.; Liu, Z.; Shi, S.; Xu, J., Boundedness and stabilization in a two-species chemotaxis-competition system with signal-dependent diffusion and sensitivity, J. Differ. Equ., 267, 494-524 (2019) · Zbl 1415.35044
[10] Keller, E.; Segel, L., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26, 399-415 (1970) · Zbl 1170.92306
[11] Lin, K.; Mu, C.; Wang, L., Boundedness in a two-species chemotaxis system, Math. Methods Appl. Sci., 38, 5085-5096 (2015) · Zbl 1334.92059
[12] Lin, K.; Mu, C.; Zhong, H., A new approach toward stabilization in a two-species chemotaxis model with logistic source, Comput. Math. Appl., 75, 837-849 (2018) · Zbl 1409.92024
[13] Liu, A.; Dai, B., Boundedness and stabilization in a two-species chemotaxis system with two chemicals, J. Math. Anal. Appl., 506, Article 125609 pp. (2022) · Zbl 1512.35083
[14] Mizukami, M., Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity, Discrete Contin. Dyn. Syst., Ser. B, 22, 2301-2319 (2017) · Zbl 1366.35068
[15] Mizukami, M., Improvement of conditions for asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity, Discrete Contin. Dyn. Syst., Ser. S, 13, 269-278 (2020) · Zbl 1442.35478
[16] Murray, J., Mathematical Biology I: An Introduction (2002), Springer-Verlag · Zbl 1006.92001
[17] Nagai, T.; Senba, T.; Yoshida, K., Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, 40, 411-433 (1997) · Zbl 0901.35104
[18] Pan, X.; Wang, L., Boundedness in a two-species chemotaxis system with nonlinear sensitivity and signal secretion, J. Math. Anal. Appl., 500, Article 125078 pp. (2021) · Zbl 1462.35417
[19] Pan, X.; Wang, L.; Zhang, J.; Wang, J., Boundedness in a three-dimensional two-species chemotaxis system with two chemicals, Z. Angew. Math. Phys., 71, 26 (2020) · Zbl 1431.35059
[20] Petter, G.; Byrne, H.; Mcelwain, D.; Norbury, J., A model of wound healing and angiogenesis in soft tissue, Math. Biosci., 136, 35-63 (2003) · Zbl 0860.92020
[21] Ren, G.; Liu, B., Global boundedness and asymptotic behavior in a two-species chemotaxis-competition system with two signals, Nonlinear Anal., Real World Appl., 48, 288-325 (2019) · Zbl 1425.92034
[22] Ren, G.; Liu, B., Global solvability and asymptotic behavior in a two-species chemotaxis system with Lotka-Volterra competitive kinetics, Math. Models Methods Appl. Sci., 31, 941-978 (2021) · Zbl 1512.35091
[23] Stinner, C.; Tello, J. I.; Winkler, M., Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., 68, 1607-1626 (2014) · Zbl 1319.92050
[24] Tao, Y.; Winkler, M., Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252, 692-715 (2012) · Zbl 1382.35127
[25] Tello, J. I.; Winkler, M., Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25, 1413-1425 (2012) · Zbl 1260.92014
[26] Viglialoro, G., Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic source, Nonlinear Anal., Real World Appl., 34, 520-535 (2017) · Zbl 1355.35094
[27] Viglialoro, G.; Woolley, T., Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth, Discrete Contin. Dyn. Syst., Ser. B, 23, 8, 3023-3045 (2018) · Zbl 1409.35046
[28] Wang, L.; Mu, C.; Hu, X.; Zheng, P., Boundedness and asymptotic stability of solutions to a two-species chemotaxis system with consumption of chemoattractant, J. Differ. Equ., 264, 3369-3401 (2018) · Zbl 1380.35025
[29] Winkler, M., A critical blow-up exponent in a chemotaxis system with nonlinear signal production, Nonlinearity, 31, 2031-2056 (2018) · Zbl 1391.35240
[30] Winkler, M., Aggregation versus global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248, 2889-2905 (2010) · Zbl 1190.92004
[31] Winkler, M., Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384, 261-272 (2011) · Zbl 1241.35028
[32] Winkler, M., Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., 35, 1516-1537 (2010) · Zbl 1290.35139
[33] Winkler, M., Chemotaxis with logistic source: very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348, 2, 708-729 (2008) · Zbl 1147.92005
[34] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100, 748-767 (2013) · Zbl 1326.35053
[35] Winkler, M.; Djie, K. C., Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72, 1044-1064 (2010) · Zbl 1183.92012
[36] Xiang, T., How strong a logistic damping can prevent blow-up for the minimal Keller-Segel chemotaxis system?, J. Math. Anal. Appl., 459, 1172-1200 (2018) · Zbl 1380.35032
[37] Zheng, J., Boundedness in a two-species quasi-linear chemotaxis system with two chemicals, Topol. Methods Nonlinear Anal., 48, 1, 463-480 (2017) · Zbl 1377.35247
[38] Zheng, J., Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differ. Equ., 259, 120-140 (2015) · Zbl 1331.92026
[39] Zheng, J., Boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with a logistic source, J. Math. Anal. Appl., 431, 2, 867-888 (2015) · Zbl 1333.35098
[40] Zhong, H., Boundedness in a quasilinear two-species chemotaxis system with two chemicals in higher dimensions, J. Math. Anal. Appl., 500, Article 125130 pp. (2021) · Zbl 1465.35380
[41] Zhuang, M.; Wang, W.; Zheng, S., Boundedness in a fully parabolic chemotaxis system with logistic-type source and nonlinear production, Nonlinear Anal., Real World Appl., 47, 473-483 (2019) · Zbl 1415.35067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.