×

Tautological classes and symmetry in Khovanov-Rozansky homology. (English) Zbl 07928017

Summary: We define a new family of commuting operators \(F_k\) in Khovanov-Rozansky link homology, similar to the action of tautological classes in the cohomology of character varieties. We prove that \(F_2\) satisfies “hard Lefshetz property” and hence exhibits the symmetry in Khovanov-Rozansky homology conjectured by Dunfield, Gukov, and Rasmussen.

MSC:

18N25 Categorification
20J05 Homological methods in group theory
57K18 Homology theories in knot theory (Khovanov, Heegaard-Floer, etc.)

References:

[1] M. ABEL and M. HOGANCAMP, Categorified Young symmetrizers and stable homology of torus links II, Selecta Math. (N.S.) 23 (2017), no. 3, 1739-1801. Digital Object Identifier: 10.1007/s00029-017-0336-4 Google Scholar: Lookup Link MathSciNet: MR3663594 · Zbl 1456.57013 · doi:10.1007/s00029-017-0336-4
[2] J. BATSON and C. SEED, A link-splitting spectral sequence in Khovanov homology, Duke Math. J. 164 (2015), no. 5, 801-841. Digital Object Identifier: 10.1215/00127094-2881374 Google Scholar: Lookup Link MathSciNet: MR3332892 · Zbl 1332.57011 · doi:10.1215/00127094-2881374
[3] D. BESSIS, The dual braid monoid, Ann. Sci. École Norm. Supér (4) 36 (2003), no. 5, 647-683. Digital Object Identifier: 10.1016/j.ansens.2003.01.001 Google Scholar: Lookup Link MathSciNet: MR2032983 · Zbl 1064.20039 · doi:10.1016/j.ansens.2003.01.001
[4] A. I. BONDAL and M. M. KAPRANOV, Enhanced triangulated categories, Mat. Sb. 181 (1990), no. 5, 669-683. Digital Object Identifier: 10.1070/SM1991v070n01ABEH001253 Google Scholar: Lookup Link MathSciNet: MR1055981 · Zbl 0729.18008 · doi:10.1070/SM1991v070n01ABEH001253
[5] R. BOTT, On the Chern-Weil homomorphism and the continuous cohomology of Lie-groups, Adv. Math. 11 (1973), 289-303. Digital Object Identifier: 10.1016/0001-8708(73)90012-1 Google Scholar: Lookup Link MathSciNet: MR0345115 · Zbl 0276.55011 · doi:10.1016/0001-8708(73)90012-1
[6] R. BOTT, H. SHULMAN, and J. STASHEFF, On the de Rham theory of certain classifying spaces, Adv. Math. 20 (1976), no. 1, 43-56. Digital Object Identifier: 10.1016/0001-8708(76)90169-9 Google Scholar: Lookup Link MathSciNet: MR0402769 · Zbl 0342.57016 · doi:10.1016/0001-8708(76)90169-9
[7] S. CAUTIS and J. KAMNITZER, Knot homology via derived categories of coherent sheaves IV, coloured links, Quantum Topol. 8 (2017), no. 2, 381-411. Digital Object Identifier: 10.4171/QT/93 Google Scholar: Lookup Link MathSciNet: MR3659494 · Zbl 1378.14011 · doi:10.4171/QT/93
[8] A. CHANDLER and E. GORSKY, Structures in HOMFLY-PT homology, preprint, arXiv:2209.13058.
[9] N. M. DUNFIELD, S. GUKOV, and J. RASMUSSEN, The superpolynomial for knot homologies, Exp. Math. 15 (2006), no. 2, 129-159. MathSciNet: MR2253002 · Zbl 1118.57012
[10] B. ELIAS and M. HOGANCAMP, On the computation of torus link homology, Compos. Math. 155 (2019), no. 1, 164-205. Digital Object Identifier: 10.1112/s0010437x18007571 Google Scholar: Lookup Link MathSciNet: MR3880028 · Zbl 1477.57013 · doi:10.1112/s0010437x18007571
[11] P. GALASHIN and T. LAM, Positroids, knots, and q, t-Catalan numbers, preprint, arXiv:2012.09745. MathSciNet: MR4311935
[12] E. GORSKY, “\(q, t\)-Catalan numbers and knot homology” in Zeta Functions in Algebra and Geometry, Contemp. Math. 566, Amer. Math. Soc., Providence, 2012, 213-232. Digital Object Identifier: 10.1090/conm/566/11222 Google Scholar: Lookup Link MathSciNet: MR2858925 · Zbl 1294.57007 · doi:10.1090/conm/566/11222
[13] E. GORSKY and M. HOGANCAMP, Hilbert schemes and y-ification of Khovanov-Rozansky homology, Geom. Topol. 26 (2022), no. 2, 587-678. Digital Object Identifier: 10.2140/gt.2022.26.587 Google Scholar: Lookup Link MathSciNet: MR4444266 · Zbl 1508.14005 · doi:10.2140/gt.2022.26.587
[14] E. Gorsky and A. Neguţ, Refined knot invariants and Hilbert schemes, J. Math. Pures Appl. (9) 104 (2015), no. 3, 403-435. Digital Object Identifier: 10.1016/j.matpur.2015.03.003 Google Scholar: Lookup Link MathSciNet: MR3383172 · Zbl 1349.14012 · doi:10.1016/j.matpur.2015.03.003
[15] E. GORSKY, A. NEGUŢ, and J. RASMUSSEN, Flag Hilbert schemes, colored projectors and Khovanov-Rozansky homology, Adv. Math. 378 (2021), no. 107542. Digital Object Identifier: 10.1016/j.aim.2020.107542 Google Scholar: Lookup Link MathSciNet: MR4192994 · Zbl 1459.57018 · doi:10.1016/j.aim.2020.107542
[16] E. Gorsky, A. Oblomkov, J. Rasmussen, and V. Shende, Torus knots and the rational DAHA, Duke Math. J. 163 (2014), no. 14, 2709-2794. Digital Object Identifier: 10.1215/00127094-2827126 Google Scholar: Lookup Link MathSciNet: MR3273582 · Zbl 1318.57010 · doi:10.1215/00127094-2827126
[17] E. Gorsky and M. Mazin, Compactified Jacobians and q, t-Catalan numbers, I, J. Combin. Theory Ser. A 120 (2013), no. 1, 49-63. Digital Object Identifier: 10.1016/j.jcta.2012.07.002 Google Scholar: Lookup Link MathSciNet: MR2971696 · Zbl 1252.05009 · doi:10.1016/j.jcta.2012.07.002
[18] M. HOGANCAMP, Khovanov-Rozansky homology and higher Catalan sequences, preprint, arXiv:1704.01562.
[19] M. HOGANCAMP and A. MELLIT, Torus link homology, preprint, arXiv:1909.00418.
[20] F. JAEGER, Circuit partitions and the homfly polynomial of closed braids, Trans. Amer. Math. Soc. 323 (1991), no. 1, 79-92. Digital Object Identifier: 10.2307/2001634 Google Scholar: Lookup Link MathSciNet: MR0986693 · Zbl 0725.57003 · doi:10.2307/2001634
[21] L. C. JEFFREY, Group cohomology construction of the cohomology of moduli spaces of flat connections on 2-manifolds, Duke Math. J. 77 (1995), no. 2, 407-429. Digital Object Identifier: 10.1215/S0012-7094-95-07712-6 Google Scholar: Lookup Link MathSciNet: MR1321064 · Zbl 0870.57013 · doi:10.1215/S0012-7094-95-07712-6
[22] B. KELLER, Introduction to A-infinity algebras and modules, Homology Homotopy Appl. 3 (2001), no. 1, 1-35. Digital Object Identifier: 10.4310/hha.2001.v3.n1.a1 Google Scholar: Lookup Link MathSciNet: MR1854636 · Zbl 0989.18009 · doi:10.4310/hha.2001.v3.n1.a1
[23] M. KHOVANOV, Triply-graded link homology and Hochschild homology of Soergel bimodules, Internat. J. Math. 18 (2007), no. 8, 869-885. Digital Object Identifier: 10.1142/S0129167X07004400 Google Scholar: Lookup Link MathSciNet: MR2339573 · Zbl 1124.57003 · doi:10.1142/S0129167X07004400
[24] M. KHOVANOV and L. ROZANSKY, Matrix factorizations and link homology II, Geom. Topol. 12 (2008), no. 3, 1387-1425. Digital Object Identifier: 10.2140/gt.2008.12.1387 Google Scholar: Lookup Link MathSciNet: MR2421131 · Zbl 1146.57018 · doi:10.2140/gt.2008.12.1387
[25] R. LIPSHITZ, P. OZSVÁTH, and D. THURSTON, Diagonals and A-infinity tensor products, preprint, arXiv:2009.05222.
[26] A. MELLIT, Toric braids and \((m, n)\)-parking functions, Duke Math. J. 170 (2021), no. 18, 4123-4169. Digital Object Identifier: 10.1215/00127094-2021-0011 Google Scholar: Lookup Link MathSciNet: MR4348234 · Zbl 1481.05011 · doi:10.1215/00127094-2021-0011
[27] A. MELLIT, Homology of torus knots, Geom. Topol. 26 (2022), no. 1, 47-70. Digital Object Identifier: 10.2140/gt.2022.26.47 Google Scholar: Lookup Link MathSciNet: MR4404874 · Zbl 1523.57014 · doi:10.2140/gt.2022.26.47
[28] A. MELLIT, Cell decompositions of character varieties, preprint, arXiv:1905.10685.
[29] A. OBLOMKOV, J. RASMUSSEN, and V. SHENDE, The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link, with appendix “Combinatorics of HOMFLY homology” by Eugene Gorsky, Geom. Topol. 22 (2018), no. 2, 645-691. Digital Object Identifier: 10.2140/gt.2018.22.645 Google Scholar: Lookup Link MathSciNet: MR3748677 · Zbl 1388.14087 · doi:10.2140/gt.2018.22.645
[30] A. OBLOMKOV and L. ROZANSKY, Knot homology and sheaves on the Hilbert scheme of points on the plane, Selecta Math. (N.S.) 24 (2018), no. 3, 2351-2454. Digital Object Identifier: 10.1007/s00029-017-0385-8 Google Scholar: Lookup Link MathSciNet: MR3816507 · Zbl 1404.57018 · doi:10.1007/s00029-017-0385-8
[31] A. OBLOMKOV and L. ROZANSKY, Affine braid group, JM elements and knot homology, Transform. Groups 24 (2019), no. 2, 531-544. Digital Object Identifier: 10.1007/s00031-018-9478-5 Google Scholar: Lookup Link MathSciNet: MR3948944 · Zbl 1439.57031 · doi:10.1007/s00031-018-9478-5
[32] A. OBLOMKOV and L. ROZANSKY, HOMFLYPT homology of Coxeter links, Transform. Groups 28 (2023), 1245-1275. Digital Object Identifier: 10.1007/s00031-023-09816-1 Google Scholar: Lookup Link MathSciNet: MR4633013 · Zbl 07773336 · doi:10.1007/s00031-023-09816-1
[33] A. OBLOMKOV and L. ROZANSKY, Dualizable link homology, preprint, arXiv:1905.06511.
[34] A. OBLOMKOV and L. ROZANSKY, Soergel bimodules and matrix factorizations, preprint, arXiv:2010.14546.
[35] A. OBLOMKOV and V. SHENDE, The Hilbert scheme of a plane curve singularity and the HOMFLY polynomial of its link, Duke Math. J. 161 (2012), no. 7, 1277-1303. Digital Object Identifier: 10.1215/00127094-1593281 Google Scholar: Lookup Link MathSciNet: MR2922375 · Zbl 1256.14025 · doi:10.1215/00127094-1593281
[36] L. E. POSITSEL’SKIĬ, Nonhomogeneous quadratic duality and curvature, Funktsional. Anal. i Prilozhen. 27 (1993), no. 3, 57-66. Digital Object Identifier: 10.1007/BF01087537 Google Scholar: Lookup Link MathSciNet: MR1250981 · Zbl 0826.16041 · doi:10.1007/BF01087537
[37] J. RASMUSSEN, Some differentials on Khovanov-Rozansky homology, Geom. Topol. 19 (2016), no. 6, 3031-3104. Digital Object Identifier: 10.2140/gt.2015.19.3031 Google Scholar: Lookup Link MathSciNet: MR3447099 · Zbl 1419.57027 · doi:10.2140/gt.2015.19.3031
[38] R. ROUQUIER, “Categorification of \(\mathfrak{sl}_2\) and braid groups” in Trends in Representation Theory of Algebras and Related Topics, Contemp. Math 406, Amer. Math. Soc., Providence, 2006, 137-167. Digital Object Identifier: 10.1090/conm/406/07657 Google Scholar: Lookup Link MathSciNet: MR2258045 · doi:10.1090/conm/406/07657
[39] S. SANEBLIDZE and R. UMBLE, Matrads, biassociahedra, and \(A_{\operatorname{\infty}} -bialgebras \), Homology Homotopy Appl. 13 (2011), no. 1, 1-57. Digital Object Identifier: 10.4310/HHA.2011.v13.n1.a2 Google Scholar: Lookup Link MathSciNet: MR2803866 · Zbl 1222.55006 · doi:10.4310/HHA.2011.v13.n1.a2
[40] S. SARKAR, Moving basepoints and the induced automorphisms of link Floer homology, Algebr. Geom. Topol. 15 (2015), no. 5, 2479-2515. Digital Object Identifier: 10.2140/agt.2015.15.2479 Google Scholar: Lookup Link MathSciNet: MR3426686 · Zbl 1331.57015 · doi:10.2140/agt.2015.15.2479
[41] W. SOERGEL, Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen, J. Inst. Math. Jussieu 6 (2007), no. 3, 501-525. Digital Object Identifier: 10.1017/S1474748007000023 Google Scholar: Lookup Link MathSciNet: MR2329762 · Zbl 1192.20004 · doi:10.1017/S1474748007000023
[42] R. N. UMBLE, “Higher homotopy Hopf algebras found: a ten-year retrospective” in Higher Structures in Geometry and Physics, Progr. Math. 287, Birkhäuser/Springer, New York, 2011, 343-362. Digital Object Identifier: 10.1007/978-0-8176-4735-3_16 Google Scholar: Lookup Link MathSciNet: MR2762552 · doi:10.1007/978-0-8176-4735-3_16
[43] B. WEBSTER and G. WILLIAMSON, A geometric model for Hochschild homology of Soergel bimodules, Geom. Topol. 12 (2008), no. 2, 1243-1263. Digital Object Identifier: 10.2140/gt.2008.12.1243 Google Scholar: Lookup Link MathSciNet: MR2425548 · Zbl 1198.20037 · doi:10.2140/gt.2008.12.1243
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.