×

Antenna subtraction for processes with identified particles at hadron colliders. (English) Zbl 07926621

Summary: Collider processes with identified hadrons in the final state are widely studied in view of determining details of the proton structure and of understanding hadronization. Their theory description requires the introduction of fragmentation functions, which parametrise the transition of a produced parton into the identified hadron. To compute higher-order perturbative corrections to these processes requires a subtraction method for infrared singular configurations. We extend the antenna subtraction method to hadron fragmentation processes in hadronic collisions up to next-to-next-to-leading order (NNLO) in QCD by computing the required fragmentation antenna functions in initial-final kinematics. The integrated antenna functions retain their dependence on the momentum fractions of the incoming and fragmenting partons.

MSC:

81Vxx Applications of quantum theory to specific physical systems
81Txx Quantum field theory; related classical field theories
81Uxx Quantum scattering theory

References:

[1] Field, RD; Feynman, RP, Quark elastic scattering as a source of high transverse momentum mesons, Phys. Rev. D, 15, 2590, 1977 · doi:10.1103/PhysRevD.15.2590
[2] R.D. Field and R.P. Feynman, A parametrization of the properties of quark jets, Nucl. Phys. B136 (1978) 1 [INSPIRE].
[3] Altarelli, G.; Parisi, G., Asymptotic freedom in parton language, Nucl. Phys. B, 126, 298, 1977 · doi:10.1016/0550-3213(77)90384-4
[4] Albino, S., The hadronization of partons, Rev. Mod. Phys., 82, 2489, 2010 · doi:10.1103/RevModPhys.82.2489
[5] Metz, A.; Vossen, A., Parton fragmentation functions, Prog. Part. Nucl. Phys., 91, 136, 2016 · doi:10.1016/j.ppnp.2016.08.003
[6] Albino, S.; Kniehl, BA; Kramer, G., AKK update: improvements from new theoretical input and experimental data, Nucl. Phys. B, 803, 42, 2008 · doi:10.1016/j.nuclphysb.2008.05.017
[7] D. de Florian et al., Parton-to-pion fragmentation reloaded, Phys. Rev. D91 (2015) 014035 [arXiv:1410.6027] [INSPIRE].
[8] N. Sato et al., First Monte Carlo analysis of fragmentation functions from single-inclusive e^+e^−annihilation, Phys. Rev. D94 (2016) 114004 [arXiv:1609.00899] [INSPIRE].
[9] D.P. Anderle, F. Ringer and M. Stratmann, Fragmentation functions at next-to-next-to-leading order accuracy, Phys. Rev. D92 (2015) 114017 [arXiv:1510.05845] [INSPIRE].
[10] NNPDF collaboration, A determination of the fragmentation functions of pions, kaons, and protons with faithful uncertainties, Eur. Phys. J. C77 (2017) 516 [arXiv:1706.07049] [INSPIRE].
[11] I. Borsa et al., Towards a global QCD analysis of fragmentation functions at next-to-next-to-leading order accuracy, Phys. Rev. Lett.129 (2022) 012002 [arXiv:2202.05060] [INSPIRE].
[12] MAP (Multi-dimensional Analyses of Partonic distributions) collaboration, Pion and kaon fragmentation functions at next-to-next-to-leading order, Phys. Lett. B834 (2022) 137456 [arXiv:2204.10331] [INSPIRE].
[13] Furmanski, W.; Petronzio, R., Singlet parton densities beyond leading order, Phys. Lett. B, 97, 437, 1980 · doi:10.1016/0370-2693(80)90636-X
[14] Almasy, AA; Moch, S.; Vogt, A., On the next-to-next-to-leading order evolution of flavour-singlet fragmentation functions, Nucl. Phys. B, 854, 133, 2012 · Zbl 1229.81296 · doi:10.1016/j.nuclphysb.2011.08.028
[15] Altarelli, G.; Ellis, RK; Martinelli, G.; Pi, S-Y, Processes involving fragmentation functions beyond the leading order in QCD, Nucl. Phys. B, 160, 301, 1979 · doi:10.1016/0550-3213(79)90062-2
[16] P.J. Rijken and W.L. van Neerven, Higher order QCD corrections to the transverse and longitudinal fragmentation functions in electron-positron annihilation, Nucl. Phys. B487 (1997) 233 [hep-ph/9609377] [INSPIRE].
[17] A. Mitov, S. Moch and A. Vogt, Next-to-next-to-leading order evolution of non-singlet fragmentation functions, Phys. Lett. B638 (2006) 61 [hep-ph/0604053] [INSPIRE].
[18] D. de Florian, M. Stratmann and W. Vogelsang, QCD analysis of unpolarized and polarized Lambda baryon production in leading and next-to-leading order, Phys. Rev. D57 (1998) 5811 [hep-ph/9711387] [INSPIRE].
[19] S. Goyal et al., Next-to-next-to-leading order QCD corrections to semi-inclusive deep-inelastic scattering, Phys. Rev. Lett.132 (2024) 251902 [arXiv:2312.17711] [INSPIRE].
[20] L. Bonino, T. Gehrmann and G. Stagnitto, Semi-inclusive deep-inelastic scattering at next-to-next-to-leading order in QCD, Phys. Rev. Lett.132 (2024) 251901 [arXiv:2401.16281] [INSPIRE].
[21] L. Bonino et al., Polarized semi-inclusive deep-inelastic scattering at NNLO in QCD, arXiv:2404.08597 [INSPIRE].
[22] S. Goyal et al., NNLO QCD corrections to polarized semi-inclusive DIS, arXiv:2404.09959 [INSPIRE].
[23] Aversa, F.; Chiappetta, P.; Greco, M.; Guillet, JP, QCD corrections to parton-parton scattering processes, Nucl. Phys. B, 327, 105, 1989 · doi:10.1016/0550-3213(89)90288-5
[24] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B485 (1997) 291 [hep-ph/9605323] [INSPIRE].
[25] S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B467 (1996) 399 [hep-ph/9512328] [INSPIRE].
[26] A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP09 (2005) 056 [hep-ph/0505111] [INSPIRE]. · Zbl 1269.81194
[27] Currie, J.; Glover, EWN; Wells, S., Infrared structure at NNLO using antenna subtraction, JHEP, 04, 066, 2013 · doi:10.1007/JHEP04(2013)066
[28] V. Del Duca et al., Jet production in the CoLoRFulNNLO method: event shapes in electron-positron collisions, Phys. Rev. D94 (2016) 074019 [arXiv:1606.03453] [INSPIRE].
[29] S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett.98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
[30] Czakon, M., A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B, 693, 259, 2010 · doi:10.1016/j.physletb.2010.08.036
[31] Czakon, M.; Heymes, D., Four-dimensional formulation of the sector-improved residue subtraction scheme, Nucl. Phys. B, 890, 152, 2014 · Zbl 1326.81237 · doi:10.1016/j.nuclphysb.2014.11.006
[32] Gaunt, J.; Stahlhofen, M.; Tackmann, FJ; Walsh, JR, N-jettiness subtractions for NNLO QCD calculations, JHEP, 09, 058, 2015 · doi:10.1007/JHEP09(2015)058
[33] M. Cacciari et al., Fully differential vector-boson-fusion Higgs production at next-to-next-to-leading order, Phys. Rev. Lett.115 (2015) 082002 [Erratum ibid.120 (2018) 139901] [arXiv:1506.02660] [INSPIRE].
[34] Caola, F.; Melnikov, K.; Röntsch, R., Nested soft-collinear subtractions in NNLO QCD computations, Eur. Phys. J. C, 77, 248, 2017 · doi:10.1140/epjc/s10052-017-4774-0
[35] L. Magnea et al., Local analytic sector subtraction at NNLO, JHEP12 (2018) 107 [Erratum ibid.06 (2019) 013] [arXiv:1806.09570] [INSPIRE].
[36] G. Bertolotti et al., NNLO subtraction for any massless final state: a complete analytic expression, JHEP07 (2023) 140 [Erratum ibid.05 (2024) 019] [arXiv:2212.11190] [INSPIRE]. · Zbl 07744285
[37] F. Devoto et al., A fresh look at the nested soft-collinear subtraction scheme: NNLO QCD corrections to N-gluon final states in \(q\overline{q}\) annihilation, JHEP02 (2024) 016 [arXiv:2310.17598] [INSPIRE].
[38] M.L. Czakon, T. Generet, A. Mitov and R. Poncelet, B-hadron production in NNLO QCD: application to LHC \(t\overline{t}\) events with leptonic decays, JHEP10 (2021) 216 [arXiv:2102.08267] [INSPIRE].
[39] Gehrmann, T.; Schürmann, R., Photon fragmentation in the antenna subtraction formalism, JHEP, 04, 031, 2022 · Zbl 1522.81720 · doi:10.1007/JHEP04(2022)031
[40] Chen, X., Single photon production at hadron colliders at NNLO QCD with realistic photon isolation, JHEP, 08, 094, 2022
[41] A. Daleo, T. Gehrmann and D. Maitre, Antenna subtraction with hadronic initial states, JHEP04 (2007) 016 [hep-ph/0612257] [INSPIRE].
[42] Gehrmann, T.; Stagnitto, G., Antenna subtraction at NNLO with identified hadrons, JHEP, 10, 136, 2022 · doi:10.1007/JHEP10(2022)136
[43] Gehrmann, T.; Glover, EWN; Marcoli, M., The colourful antenna subtraction method, JHEP, 03, 114, 2024 · Zbl 07862113 · doi:10.1007/JHEP03(2024)114
[44] A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Infrared structure of e^+e^− → 2 jets at NNLO, Nucl. Phys. B691 (2004) 195 [hep-ph/0403057] [INSPIRE].
[45] A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Quark-gluon antenna functions from neutralino decay, Phys. Lett. B612 (2005) 36 [hep-ph/0501291] [INSPIRE].
[46] A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett. B612 (2005) 49 [hep-ph/0502110] [INSPIRE].
[47] Braun-White, O.; Glover, N.; Preuss, CT, A general algorithm to build real-radiation antenna functions for higher-order calculations, JHEP, 06, 065, 2023 · doi:10.1007/JHEP06(2023)065
[48] Braun-White, O.; Glover, N.; Preuss, CT, A general algorithm to build mixed real and virtual antenna functions for higher-order calculations, JHEP, 11, 179, 2023 · doi:10.1007/JHEP11(2023)179
[49] Fox, E.; Glover, N., Initial-final and initial-initial antenna functions for real radiation at next-to-leading order, JHEP, 12, 171, 2023 · doi:10.1007/JHEP12(2023)171
[50] Jakubčík, P.; Marcoli, M.; Stagnitto, G., The parton-level structure of e^+e^− → 2 jets at N^3LO, JHEP, 01, 168, 2023 · doi:10.1007/JHEP01(2023)168
[51] Chen, X.; Jakubčík, P.; Marcoli, M.; Stagnitto, G., The parton-level structure of Higgs decays to hadrons at N^3LO, JHEP, 06, 185, 2023
[52] Chen, X.; Jakubčík, P.; Marcoli, M.; Stagnitto, G., Radiation from a gluon-gluino colour-singlet dipole at N^3LO, JHEP, 12, 198, 2023 · doi:10.1007/JHEP12(2023)198
[53] Daleo, A.; Gehrmann-De Ridder, A.; Gehrmann, T.; Luisoni, G., Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP, 01, 118, 2010 · Zbl 1269.81194 · doi:10.1007/JHEP01(2010)118
[54] Gehrmann, T.; Monni, PF, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP, 12, 049, 2011 · Zbl 1306.81339 · doi:10.1007/JHEP12(2011)049
[55] Gehrmann-De Ridder, A.; Gehrmann, T.; Ritzmann, M., Antenna subtraction at NNLO with hadronic initial states: double real initial-initial configurations, JHEP, 10, 047, 2012 · doi:10.1007/JHEP10(2012)047
[56] Chen, X.; Gehrmann, T.; Glover, EWN; Mo, J., Antenna subtraction for jet production observables in full colour at NNLO, JHEP, 10, 040, 2022 · doi:10.1007/JHEP10(2022)040
[57] Chen, X., Automation of antenna subtraction in colour space: gluonic processes, JHEP, 10, 099, 2022 · doi:10.1007/JHEP10(2022)099
[58] Chetyrkin, KG; Tkachov, FV, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B, 192, 159, 1981 · doi:10.1016/0550-3213(81)90199-1
[59] S. Laporta, High-precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. · Zbl 0973.81082
[60] A. von Manteuffel and C. Studerus, Reduze 2 — distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE].
[61] T. Gehrmann and E. Remiddi, Differential equations for two-loop four-point functions, Nucl. Phys. B580 (2000) 485 [hep-ph/9912329] [INSPIRE]. · Zbl 1071.81089
[62] S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B427 (1998) 161 [hep-ph/9802439] [INSPIRE].
[63] S. Caletti et al., QCD predictions for vector boson plus hadron production at the LHC, arXiv:2405.17540 [INSPIRE].
[64] Caletti, S.; Larkoski, AJ; Marzani, S.; Reichelt, D., Practical jet flavour through NNLO, Eur. Phys. J. C, 82, 632, 2022 · doi:10.1140/epjc/s10052-022-10568-7
[65] Czakon, M.; Mitov, A.; Poncelet, R., Infrared-safe flavoured anti-k_Tjets, JHEP, 04, 138, 2023 · doi:10.1007/JHEP04(2023)138
[66] R. Gauld, A. Huss and G. Stagnitto, Flavor identification of reconstructed hadronic jets, Phys. Rev. Lett.130 (2023) 161901 [Erratum ibid.132 (2024) 159901] [arXiv:2208.11138] [INSPIRE].
[67] F. Caola et al., Flavored jets with exact anti-k_Tkinematics and tests of infrared and collinear safety, Phys. Rev. D108 (2023) 094010 [arXiv:2306.07314] [INSPIRE].
[68] L. Lewin, Polylogarithms and associated functions, North Holland, Amsterdam, The Netherlands (1981). · Zbl 0465.33001
[69] Curci, G.; Furmanski, W.; Petronzio, R., Evolution of parton densities beyond leading order: the nonsinglet case, Nucl. Phys. B, 175, 27, 1980 · doi:10.1016/0550-3213(80)90003-6
[70] P.J. Rijken and W.L. van Neerven, \( O\left({\alpha}_s^2\right)\) contributions to the longitudinal fragmentation function in e^+e^−annihilation, Phys. Lett. B386 (1996) 422 [hep-ph/9604436] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.