×

NNLO subtraction for any massless final state: a complete analytic expression. (English) Zbl 07744285

J. High Energy Phys. 2023, No. 7, Paper No. 140, 97 p. (2023); erratum ibid. 2024, No. 5, Paper No. 19, 2 p. (2024).
Summary: We use the Local Analytic Sector Subtraction scheme to construct a completely analytic set of expressions implementing a fully local infrared subtraction at NNLO for generic coloured massless final states. The cancellation of all explicit infrared poles appearing in the double-virtual contribution, in the real-virtual correction and in the integrated local infrared counterterms is explicitly verified, and all finite contributions arising from integrated local counterterms are analytically evaluated in terms of ordinary polylogarithms up to weight three. The resulting subtraction formula can readily be implemented in any numerical framework containing the relevant matrix elements up to NNLO.

MSC:

81-XX Quantum theory

References:

[1] Huss, A.; Huston, J.; Jones, S.; Pellen, M., Les Houches 2021 — physics at TeV colliders: report on the standard model precision wishlist, J. Phys. G, 50 (2023) · doi:10.1088/1361-6471/acbaec
[2] M. Czakon, A. Mitov and R. Poncelet, Next-to-next-to-leading order study of three-jet production at the LHC, Phys. Rev. Lett.127 (2021) 152001 [Erratum ibid.129 (2022) 119901] [arXiv:2106.05331] [INSPIRE].
[3] H.B. Hartanto, R. Poncelet, A. Popescu and S. Zoia, Next-to-next-to-leading order QCD corrections to \(Wb\overline{b}\) production at the LHC, Phys. Rev. D106 (2022) 074016 [arXiv:2205.01687] [INSPIRE].
[4] Buonocore, L., Associated production of a W boson and massive bottom quarks at next-to-next-to-leading order in QCD, Phys. Rev. D, 107 (2023) · doi:10.1103/PhysRevD.107.074032
[5] Catani, S., Higgs boson production in association with a top-antitop quark pair in next-to-next-to-leading order QCD, Phys. Rev. Lett., 130 (2023) · doi:10.1103/PhysRevLett.130.111902
[6] Baglio, J.; Duhr, C.; Mistlberger, B.; Szafron, R., Inclusive production cross sections at N^3LO, JHEP, 12, 066 (2022) · doi:10.1007/JHEP12(2022)066
[7] F. Caola et al., The path forward to N^3LO, in the proceedings of the Snowmass 2021, (2022) [arXiv:2203.06730] [INSPIRE].
[8] Agarwal, N.; Magnea, L.; Signorile-Signorile, C.; Tripathi, A., The infrared structure of perturbative gauge theories, Phys. Rept., 994, 1 (2023) · Zbl 1518.81075 · doi:10.1016/j.physrep.2022.10.001
[9] F. Bloch and A. Nordsieck, Note on the radiation field of the electron, Phys. Rev.52 (1937) 54 [INSPIRE]. · JFM 63.1393.02
[10] T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys.3 (1962) 650 [INSPIRE]. · Zbl 0118.44501
[11] T.D. Lee and M. Nauenberg, Degenerate systems and mass singularities, Phys. Rev.133 (1964) B1549 [INSPIRE].
[12] G. Grammer Jr. and D.R. Yennie, Improved treatment for the infrared divergence problem in quantum electrodynamics, Phys. Rev. D8 (1973) 4332 [INSPIRE].
[13] J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of hard processes in QCD, Adv. Ser. Direct. High Energy Phys.5 (1989) 1 [hep-ph/0409313] [INSPIRE]. · Zbl 0961.81526
[14] A. Sen, Asymptotic behavior of the wide angle on-shell quark scattering amplitudes in non-Abelian gauge theories, Phys. Rev. D28 (1983) 860 [INSPIRE].
[15] J.C. Collins, Sudakov form-factors, Adv. Ser. Direct. High Energy Phys.5 (1989) 573 [hep-ph/0312336] [INSPIRE]. · Zbl 0961.81525
[16] L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys. Rev. D42 (1990) 4222 [INSPIRE].
[17] G.F. Sterman, Partons, factorization and resummation, TASI^I95, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI′95): QCD and beyond, (1995), p. 327 [hep-ph/9606312] [INSPIRE].
[18] S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B427 (1998) 161 [hep-ph/9802439] [INSPIRE].
[19] G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B552 (2003) 48 [hep-ph/0210130] [INSPIRE]. · Zbl 1005.81519
[20] Dixon, LJ; Magnea, L.; Sterman, GF, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP, 08, 022 (2008) · doi:10.1088/1126-6708/2008/08/022
[21] Gardi, E.; Magnea, L., Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP, 03, 079 (2009) · doi:10.1088/1126-6708/2009/03/079
[22] E. Gardi and L. Magnea, Infrared singularities in QCD amplitudes, Nuovo Cim. C32N5-6 (2009) 137 [arXiv:0908.3273] [INSPIRE].
[23] T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett.102 (2009) 162001 [Erratum ibid.111 (2013) 199905] [arXiv:0901.0722] [INSPIRE]. · Zbl 1434.81135
[24] T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory amplitudes, JHEP06 (2009) 081 [Erratum ibid.11 (2013) 024] [arXiv:0903.1126] [INSPIRE]. · Zbl 1342.81350
[25] Feige, I.; Schwartz, MD, Hard-soft-collinear factorization to all orders, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.105020
[26] S. Catani and M. Grazzini, Collinear factorization and splitting functions for next-to-next-to-leading order QCD calculations, Phys. Lett. B446 (1999) 143 [hep-ph/9810389] [INSPIRE].
[27] S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys. B570 (2000) 287 [hep-ph/9908523] [INSPIRE].
[28] D.A. Kosower, All order collinear behavior in gauge theories, Nucl. Phys. B552 (1999) 319 [hep-ph/9901201] [INSPIRE].
[29] Almelid, O.; Duhr, C.; Gardi, E., Three-loop corrections to the soft anomalous dimension in multileg scattering, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.172002
[30] Almelid, O., Bootstrapping the QCD soft anomalous dimension, JHEP, 09, 073 (2017) · Zbl 1382.81196 · doi:10.1007/JHEP09(2017)073
[31] J.M. Campbell and E.W.N. Glover, Double unresolved approximations to multiparton scattering amplitudes, Nucl. Phys. B527 (1998) 264 [hep-ph/9710255] [INSPIRE].
[32] Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The infrared behavior of one loop QCD amplitudes at next-to-next-to leading order, Phys. Rev. D60 (1999) 116001 [hep-ph/9903516] [INSPIRE].
[33] S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B591 (2000) 435 [hep-ph/0007142] [INSPIRE].
[34] V. Del Duca, A. Frizzo and F. Maltoni, Factorization of tree QCD amplitudes in the high-energy limit and in the collinear limit, Nucl. Phys. B568 (2000) 211 [hep-ph/9909464] [INSPIRE].
[35] S.D. Badger and E.W.N. Glover, Two loop splitting functions in QCD, JHEP07 (2004) 040 [hep-ph/0405236] [INSPIRE].
[36] Duhr, C.; Gehrmann, T., The two-loop soft current in dimensional regularization, Phys. Lett. B, 727, 452 (2013) · Zbl 1331.81304 · doi:10.1016/j.physletb.2013.10.063
[37] Li, Y.; Zhu, HX, Single soft gluon emission at two loops, JHEP, 11, 080 (2013) · doi:10.1007/JHEP11(2013)080
[38] Banerjee, P.; Dhani, PK; Ravindran, V., Gluon jet function at three loops in QCD, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.094016
[39] Brüser, R.; Liu, ZL; Stahlhofen, M., Three-loop quark jet function, Phys. Rev. Lett., 121 (2018) · doi:10.1103/PhysRevLett.121.072003
[40] Dixon, LJ; Herrmann, E.; Yan, K.; Zhu, HX, Soft gluon emission at two loops in full color, JHEP, 05, 135 (2020) · doi:10.1007/JHEP05(2020)135
[41] Catani, S.; Colferai, D.; Torrini, A., Triple (and quadruple) soft-gluon radiation in QCD hard scattering, JHEP, 01, 118 (2020) · doi:10.1007/JHEP01(2020)118
[42] Del Duca, V., Tree-level splitting amplitudes for a gluon into four collinear partons, JHEP, 10, 093 (2020) · doi:10.1007/JHEP10(2020)093
[43] Catani, S.; Cieri, L., Multiple soft radiation at one-loop order and the emission of a soft quark-antiquark pair, Eur. Phys. J. C, 82, 97 (2022) · doi:10.1140/epjc/s10052-022-10001-z
[44] Del Duca, V.; Duhr, C.; Haindl, R.; Liu, Z., Tree-level soft emission of a quark pair in association with a gluon, JHEP, 01, 040 (2023) · Zbl 1540.81168 · doi:10.1007/JHEP01(2023)040
[45] Czakon, M.; Eschment, F.; Schellenberger, T., Revisiting the double-soft asymptotics of one-loop amplitudes in massless QCD, JHEP, 04, 065 (2023) · Zbl 07693953 · doi:10.1007/JHEP04(2023)065
[46] Czakon, M.; Sapeta, S., Complete collection of one-loop triple-collinear splitting operators for dimensionally-regulated QCD, JHEP, 07, 052 (2022) · Zbl 1522.81271 · doi:10.1007/JHEP07(2022)052
[47] Catani, S.; Cieri, L.; Colferai, D.; Coradeschi, F., Soft gluon-quark-antiquark emission in QCD hard scattering, Eur. Phys. J. C, 83, 38 (2023) · doi:10.1140/epjc/s10052-022-11141-y
[48] W.T. Giele, E.W.N. Glover and D.A. Kosower, Higher order corrections to jet cross-sections in hadron colliders, Nucl. Phys. B403 (1993) 633 [hep-ph/9302225] [INSPIRE].
[49] W.T. Giele, E.W.N. Glover and D.A. Kosower, The inclusive two jet triply differential cross-section, Phys. Rev. D52 (1995) 1486 [hep-ph/9412338] [INSPIRE].
[50] S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B467 (1996) 399 [hep-ph/9512328] [INSPIRE].
[51] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B485 (1997) 291 [hep-ph/9605323] [INSPIRE].
[52] Z. Nagy and D.E. Soper, General subtraction method for numerical calculation of one loop QCD matrix elements, JHEP09 (2003) 055 [hep-ph/0308127] [INSPIRE].
[53] Bevilacqua, G.; Czakon, M.; Kubocz, M.; Worek, M., Complete Nagy-Soper subtraction for next-to-leading order calculations in QCD, JHEP, 10, 204 (2013) · doi:10.1007/JHEP10(2013)204
[54] Prisco, RM; Tramontano, F., Dual subtractions, JHEP, 06, 089 (2021) · Zbl 1466.81138 · doi:10.1007/JHEP06(2021)089
[55] J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D60 (1999) 113006 [hep-ph/9905386] [INSPIRE].
[56] Gleisberg, T.; Krauss, F., Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C, 53, 501 (2008) · doi:10.1140/epjc/s10052-007-0495-0
[57] Frederix, R.; Gehrmann, T.; Greiner, N., Automation of the dipole subtraction method in MadGraph/MadEvent, JHEP, 09, 122 (2008) · doi:10.1088/1126-6708/2008/09/122
[58] Czakon, M.; Papadopoulos, CG; Worek, M., Polarizing the dipoles, JHEP, 08, 085 (2009) · doi:10.1088/1126-6708/2009/08/085
[59] Hasegawa, K.; Moch, S.; Uwer, P., AutoDipole: automated generation of dipole subtraction terms, Comput. Phys. Commun., 181, 1802 (2010) · Zbl 1219.81244 · doi:10.1016/j.cpc.2010.06.044
[60] Frederix, R.; Frixione, S.; Maltoni, F.; Stelzer, T., Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP, 10, 003 (2009) · doi:10.1088/1126-6708/2009/10/003
[61] Alioli, S.; Nason, P.; Oleari, C.; Re, E., A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP, 06, 043 (2010) · Zbl 1290.81155 · doi:10.1007/JHEP06(2010)043
[62] Platzer, S.; Gieseke, S., Dipole showers and automated NLO matching in Herwig++, Eur. Phys. J. C, 72, 2187 (2012) · doi:10.1140/epjc/s10052-012-2187-7
[63] J. Reuter et al., Automation of NLO processes and decays and POWHEG matching in WHIZARD, J. Phys. Conf. Ser.762 (2016) 012059 [arXiv:1602.06270] [INSPIRE].
[64] S. Frixione and M. Grazzini, Subtraction at NNLO, JHEP06 (2005) 010 [hep-ph/0411399] [INSPIRE].
[65] A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP09 (2005) 056 [hep-ph/0505111] [INSPIRE]. · Zbl 1269.81194
[66] Currie, J.; Glover, EWN; Wells, S., Infrared structure at NNLO using antenna subtraction, JHEP, 04, 066 (2013) · doi:10.1007/JHEP04(2013)066
[67] G. Somogyi, Z. Trócsányi and V. Del Duca, Matching of singly- and doubly-unresolved limits of tree-level QCD squared matrix elements, JHEP06 (2005) 024 [hep-ph/0502226] [INSPIRE].
[68] G. Somogyi, Z. Trócsányi and V. Del Duca, A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of doubly-real emissions, JHEP01 (2007) 070 [hep-ph/0609042] [INSPIRE].
[69] G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of real-virtual emission, JHEP01 (2007) 052 [hep-ph/0609043] [INSPIRE]. · Zbl 1214.81293
[70] Czakon, M., A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B, 693, 259 (2010) · doi:10.1016/j.physletb.2010.08.036
[71] Czakon, M., Double-real radiation in hadronic top quark pair production as a proof of a certain concept, Nucl. Phys. B, 849, 250 (2011) · Zbl 1215.81117 · doi:10.1016/j.nuclphysb.2011.03.020
[72] C. Anastasiou, K. Melnikov and F. Petriello, A new method for real radiation at NNLO, Phys. Rev. D69 (2004) 076010 [hep-ph/0311311] [INSPIRE].
[73] Caola, F.; Melnikov, K.; Röntsch, R., Nested soft-collinear subtractions in NNLO QCD computations, Eur. Phys. J. C, 77, 248 (2017) · doi:10.1140/epjc/s10052-017-4774-0
[74] S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett.98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
[75] Grazzini, M.; Kallweit, S.; Wiesemann, M., Fully differential NNLO computations with MATRIX, Eur. Phys. J. C, 78, 537 (2018) · doi:10.1140/epjc/s10052-018-5771-7
[76] Boughezal, R.; Melnikov, K.; Petriello, F., A subtraction scheme for NNLO computations, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.034025
[77] Boughezal, R.; Focke, C.; Liu, X.; Petriello, F., W-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett., 115 (2015) · doi:10.1103/PhysRevLett.115.062002
[78] Boughezal, R., Higgs boson production in association with a jet at NNLO using jettiness subtraction, Phys. Lett. B, 748, 5 (2015) · doi:10.1016/j.physletb.2015.06.055
[79] Gaunt, J.; Stahlhofen, M.; Tackmann, FJ; Walsh, JR, N -jettiness subtractions for NNLO QCD calculations, JHEP, 09, 058 (2015) · doi:10.1007/JHEP09(2015)058
[80] M. Cacciari et al., Fully differential vector-boson-fusion Higgs production at next-to-next-to-leading order, Phys. Rev. Lett.115 (2015) 082002 [Erratum ibid.120 (2018) 139901] [arXiv:1506.02660] [INSPIRE].
[81] Sborlini, GFR; Driencourt-Mangin, F.; Rodrigo, G., Four-dimensional unsubtraction with massive particles, JHEP, 10, 162 (2016) · doi:10.1007/JHEP10(2016)162
[82] Herzog, F., Geometric IR subtraction for final state real radiation, JHEP, 08, 006 (2018) · doi:10.1007/JHEP08(2018)006
[83] L. Magnea et al., Local analytic sector subtraction at NNLO, JHEP12 (2018) 107 [Erratum ibid.06 (2019) 013] [arXiv:1806.09570] [INSPIRE].
[84] Magnea, L., Factorisation and subtraction beyond NLO, JHEP, 12, 062 (2018) · doi:10.1007/JHEP12(2018)062
[85] Capatti, Z.; Hirschi, V.; Kermanschah, D.; Ruijl, B., Loop-tree duality for multiloop numerical integration, Phys. Rev. Lett., 123 (2019) · Zbl 1436.81144 · doi:10.1103/PhysRevLett.123.151602
[86] Torres Bobadilla, WJ, May the four be with you: novel IR-subtraction methods to tackle NNLO calculations, Eur. Phys. J. C, 81, 250 (2021) · doi:10.1140/epjc/s10052-021-08996-y
[87] Chawdhry, HA; Czakon, ML; Mitov, A.; Poncelet, R., NNLO QCD corrections to three-photon production at the LHC, JHEP, 02, 057 (2020) · doi:10.1007/JHEP02(2020)057
[88] Chawdhry, HA; Czakon, M.; Mitov, A.; Poncelet, R., NNLO QCD corrections to diphoton production with an additional jet at the LHC, JHEP, 09, 093 (2021) · doi:10.1007/JHEP09(2021)093
[89] Bertolotti, G.; Torrielli, P.; Uccirati, S.; Zaro, M., Local analytic sector subtraction for initial- and final-state radiation at NLO in massless QCD, JHEP, 12, 042 (2022) · doi:10.1007/JHEP12(2022)042
[90] F. Febres Cordero, A. von Manteuffel and T. Neumann, Computational challenges for multi-loop collider phenomenology: a Snowmass 2021 white paper, Comput. Softw. Big Sci.6 (2022) 14 [arXiv:2204.04200] [INSPIRE].
[91] L. Magnea et al., Strongly-ordered infrared limits for subtraction counterterms from factorisation, PoSLL2022 (2022) 075 [arXiv:2209.06102] [INSPIRE].
[92] Magnea, L., Analytic integration of soft and collinear radiation in factorised QCD cross sections at NNLO, JHEP, 02, 037 (2021) · doi:10.1007/JHEP02(2021)037
[93] Del Duca, V.; Deutschmann, N.; Lionetti, S., Momentum mappings for subtractions at higher orders in QCD, JHEP, 12, 129 (2019) · doi:10.1007/JHEP12(2019)129
[94] Del Duca, V., Three-jet production in electron-positron collisions at next-to-next-to-leading order accuracy, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.152004
[95] Del Duca, V., Jet production in the CoLoRFulNNLO method: event shapes in electron-positron collisions, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.074019
[96] Grozin, A.; Henn, J.; Stahlhofen, M., On the Casimir scaling violation in the cusp anomalous dimension at small angle, JHEP, 10, 052 (2017) · Zbl 1383.81270 · doi:10.1007/JHEP10(2017)052
[97] Moch, S., On quartic colour factors in splitting functions and the gluon cusp anomalous dimension, Phys. Lett. B, 782, 627 (2018) · doi:10.1016/j.physletb.2018.06.017
[98] Weinzierl, S., Does one need the O(ϵ)- and O(ϵ^2)-terms of one-loop amplitudes in an NNLO calculation?, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.074007
[99] S. Catani and M.H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B378 (1996) 287 [hep-ph/9602277] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.