×

The random Markov-Kakutani fixed point theorem in a random locally convex module. (English) Zbl 07922018

Summary: Based on the recently developed theory of \(\sigma\)-stable sets and stable compactness, we first establish the random Markov-Kakutani fixed point theorem in a random locally convex module: let \((E, \mathcal{P})\) be a random locally convex module and \(G\) be a nonempty stably compact \(L^0\)-convex subset of \(E\), then every commutative family of \(\mathcal{T}_c(\mathcal{P}_{cc})\)-continuous \(L^0\)-affine mappings from \(G\) to \(G\) has a common fixed point, where \(\mathcal{P}_{cc}\) is the \(\sigma\)-stable hull of \(\mathcal{P}\) and \(T_c(\mathcal{P}_{cc})\) is the locally \(L^0\)-convex topology induced by \(\mathcal{P}_{cc}\). Second, we prove that the random Markov-Kakutani fixed point theorem implies the algebraic form of the known random Hahn-Banach theorem. Finally, we establish a more general strict separation theorem in a random locally convex module, which provides not only a more general geometric form of the random Hahn-Banach theorem but also another proof for the random Markov-Kakutani fixed point theorem. Therefore, as a byproduct, the work of this paper also shows that the algebraic and geometric forms of the random Hahn-Banach theorem are equivalent. It should be pointed out that the main challenge in this paper lies in overcoming noncompactness since a stably compact set is generally noncompact.

MSC:

47-XX Operator theory
46H25 Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX)
41A50 Best approximation, Chebyshev systems
47H10 Fixed-point theorems
46A22 Theorems of Hahn-Banach type; extension and lifting of functionals and operators

References:

[1] Belluce, L.P.; Kirk, W.A. Fixed point theorems for families of contraction mappings. Pa-cific J. Math. 18 (1966), 213-217. MR0199703(33, 7846), Zbl 0149.10701. 1197 · Zbl 0149.10701
[2] Day, M.M. Fixed point theorems for compact convex sets. Illinois J. Math. 5 (1961), 585-590. MR0138100 (25,1547), Zbl 0097.31705. 1197 · Zbl 0097.31705
[3] DeMARR, R. Common fixed points for commuting contraction mappings. Pacific J. Math. 13 (1963), 1139-1141. MR0159229, Zbl 0191.14901. 1197 · Zbl 0191.14901
[4] Drapeau, S.; Jamneshan, A.; Karliczek, M.; Kupper, M. The algebra of conditional sets and the concepts of conditional topology and compactness. J. Math. Anal. Appl. 437 (2016), no. 1, 561-589. MR3451982, Zbl 1436.03266, doi: 10.1016/j.jmaa.2015.11.057. 1198 · Zbl 1436.03266 · doi:10.1016/j.jmaa.2015.11.057
[5] Dunford, N.; Schwartz, J.T. Linear Operators (I). Interscience, New York, 1958. MR0117523 (90g:47001a), Zbl 0084.10402. 1199
[6] Eberlein, W.F. Abstract ergodic theorems and weak almost periodic functions. Trans. Amer. Math. Soc. 67 (1949), 217-240. MR0036455 (12,112a), Zbl 0034.06404, doi: 10.2307/1990424. 1197 · Zbl 0034.06404 · doi:10.2307/1990424
[7] Filipović, D.; Kupper, M.; Vogelpoth, N. Separation and duality in locally 𝐿 0 -convex modules. J. Funct. Anal. 256 (2009), no. 12, 3996-4029. MR2521918 (2011b:46081), Zbl 1180.46055, doi: 10.1016/j.jfa.2008.11.015. 1197, 1198, 1201 · Zbl 1180.46055 · doi:10.1016/j.jfa.2008.11.015
[8] Gigli, N. Nonsmooth differential geometry-an approach tailored for spaces with Ricci curvature bounded from below. Mem. Amer. Math. Soc. 251 (2018) 1196. MR3756920, Zbl 1404.53056, doi: 10.1090/memo/1196. 1197 · Zbl 1404.53056 · doi:10.1090/memo/1196
[9] Guo, T.X. Random metric theory and its applications, Ph.D thesis, Xi’an Jiaotong Univer-sity, China, 1992. 1197
[10] Guo, T.X. A new approach to probabilistic functional analysis, Proceedings of the first China Postdoctoral Academic Conference, The China National Defense and Industry Press, Beijing, 1993, pp. 1150-1154. 1197
[11] Guo, T.X. The Radon-Nikodým property of conjugate spaces and the 𝑤 * -equivalence theorem for 𝑤 * -measurable functions. Sci. China Ser. A 39 (1996), no. 10, 1034-1041. MR1431235 (98e:46014), Zbl 0868.46014. 1197 · Zbl 0868.46014
[12] Guo, T.X. The relation of Banach-Alaoglu theorem and Banach-Bourbaki-Kakutani-Šmulian theorem in complete random normed modules to stratification structure. Sci. China Ser. A 51 (2008), no. 9, 1651-1663. MR2426061 (2009h:46146), Zbl 1167.46049, doi: 10.1007/s11425-008-0047-6. 1198 · Zbl 1167.46049 · doi:10.1007/s11425-008-0047-6
[13] Guo, T.X. Some basic theories of random normed linear spaces and random inner prod-uct spaces. Acta Anal. Funct. Appl. 1 (1999), no. 2, 160-184. MR1739254 (2000j:46139), Zbl 0965.46010. 1197, 1200
[14] Guo, T.X. Relations between some basic results derived from two kinds of topologies for a random locally convex module. J. Funct. Anal. 258 (2010), no. 9, 3024-3047. MR2595733 (2011a:46073), Zbl 1198.46058, doi: 10.1016/j.jfa.2010.02.002. 1197, 1198, 1200, 1201, 1202, 1211, 1212, 1213, 1215, 1216 · Zbl 1198.46058 · doi:10.1016/j.jfa.2010.02.002
[15] Guo, T.X.; Li, S.B. The James theorem in complete random normed modules. J. Math. Anal. Appl. 308 (2005), no. 1, 257-265. MR2142417 (2006b:46102), Zbl 1077.46061, doi: 10.1016/j.jmaa.2005.01.024. 1197 · Zbl 1077.46061 · doi:10.1016/j.jmaa.2005.01.024
[16] Guo, T.X.; Mu, X.H.; Tu, Q. The relations among the notions of various kinds of stabil-ity and their applications. Banach J. Math. Anal. 18 (2024), 3, 42. MR4750396, Zbl 07871743, doi: 10.1007/s43037-024-00354-w. 1197, 1198 · Zbl 07871743 · doi:10.1007/s43037-024-00354-w
[17] Guo, T.X.; Wang, Y.C.; Xu, H.K.; Yuan, G.; Chen G. The noncompact Schauder fixed point theorem in random normed modules and its applications. arXiv:2104.11095v10, 2024. 1198
[18] Guo, T.X.; Wang, Y.C.; Tang, Y. The Krein-Milman theorem in random locally con-vex modules and its applications. Sci. Sin. Math. 53 (2023), no. 12, 1-18 (in Chinese). doi: 10.1360/SSM-2022-0220. 1198, 1202, 1204, 1205, 1213 · doi:10.1360/SSM-2022-0220
[19] Guo, T.X.; You, Z.Y. The Riesz’s representation theorem in complete random inner product modules and its applications. Chin. Ann. Math. Ser. A 17 (1996), no. 3, 361-364. MR1431388 (97j:46019), Zbl 0940.60067. 1197 · Zbl 0940.60067
[20] Guo, T.X.; Zhang, E.X.; Wang, Y.C.; Guo, Z.C. Two fxed point theorems in com-plete random normed modules and their applications to backward stochastic equa-tions. J. Math. Anal. Appl. 486 (2020), no. 2, 123644. MR4037576, Zbl 1471.60086, doi: 10.1016/j.jmaa.2019.123644. 1198 · Zbl 1471.60086 · doi:10.1016/j.jmaa.2019.123644
[21] Guo, T.X.; Zhang, E.X.; Wu, M.Z.; Yang, B.X; Yuan, G.; Zeng, X.L. On random con-vex analysis. J. Nonlinear Convex Anal. 18 (2017), no. 11, 1967-1996. MR3734154, Zbl 1396.46056. 1198, 1213 · Zbl 1396.46056
[22] Guo, T.X.; Zhao, S.E.; Zeng, X.L. The relations among the three kinds of conditional risk measures. Sci. China Math. 57 (2014), no. 8, 1753-1764. MR3229236, Zbl 1316.46004, doi: 10.1007/s11425-014-4840-0. 1198 · Zbl 1316.46004 · doi:10.1007/s11425-014-4840-0
[23] Guo, T.X.; Zhao, S.E.; Zeng, X.L. Random convex analysis (I): Separation and Fenchel-Moreau duality in random locally convex modules. Sci. Sin. Math. 45 (2015), no. 12, 1961-1980 (in Chinese). doi: 10.1360/012015-38. 1198, 1202, 1213, 1214 · Zbl 1499.46010 · doi:10.1360/012015-38
[24] Guo, T.X.; Zhao, S.E.; Zeng, X.L. Random convex analysis (II): Continuity and subdiffer-entiability theorems in 𝐿 0 -pre-barreled random locally convex modules. Sci. Sin. Math. 45 (2015), no. 5, 647-662 (in Chinese). doi: 10.1360/N012015-00042. 1198, 1201 · Zbl 1488.46111 · doi:10.1360/N012015-00042
[25] Jamneshan, A.; Zapata J.M. On compactness in 𝐿 0 -modules. arXiv:1711.09785v1, 2017. 1204, 1210
[26] Kabanov, Y.; Stricker, C. A teacher’s note on no-arbitrage criteria. Séminaire de Prob-abilités, XXXV, 149-152. Lecture Notes in Math., 1755. Springer, Berlin, 2001. MR1837282 (2003c:60073), Zbl 0982.60032, doi: 10.1007/978-3-540-44671-2_9. 1198 · Zbl 0982.60032 · doi:10.1007/978-3-540-44671-2_9
[27] Kakutani, S. Two fixed point theorems concerning bicompact convex sets. Proc. Imp. Acad. Tokyo 14 (1938), no. 7, 242-245. MR1568507, Zbl 64.1101.03. doi: 10.3792/pia/1195579652 1197, 1198 · Zbl 0020.07906 · doi:10.3792/pia/1195579652
[28] Kirk, W.A. Fixed point theory for nonexpansive mappings. Fixed point theory (Sher-brooke, Que., 1980), pp. 484-505. Lecture Notes in Math., 886. Springer-Verlag, Berlin, 1981. MR0643024 (83c:47076), Zbl 0479.47049, doi: 10.1007/BFb0092201. 1197 · Zbl 0479.47049 · doi:10.1007/BFb0092201
[29] Lučić, D.; Pasqualetto, E. The Serre-Swan theorem for normed modules. Rend. Circ. Mat. Palermo 68 (2019), no. 2, 385-404. MR4148753, Zbl 1433.46030, doi: 10.1007/s12215-018-0366-6. 1197 · Zbl 1433.46030 · doi:10.1007/s12215-018-0366-6
[30] Lučić, M.; Pasqualetto, E.; Vojnović, I. On the reflexivity properties of Banach bundles and Banach modules. Banach J. Math. Anal. 18 (2024), no.1, 7. MR4678838, Zbl 1529.18004, doi: 10.1007/s43037-023-00315-9. 1197 · Zbl 1529.18004 · doi:10.1007/s43037-023-00315-9
[31] Markov, A. Quelques théorèmes sur ensembles abéliens. Dokl. Akad. Nauk. SSSR (N.S.) 1 (1936), no. 1, 311-313. Zbl 62.0440.02. 1197 · Zbl 0014.08201
[32] Namioka, I. Kakutani-type fixed point theorems: a survey. J. Fixed Point Theory Appl. 9 (2011), no.1, 1-23. MR2771686 (2011m:47108), Zbl 1206.47059, doi: 10.1007/s11784-010-0036-6. 1197 · Zbl 1206.47059 · doi:10.1007/s11784-010-0036-6
[33] Ryll-Nardzewski, C. On fixed points of semigroups of endomorphisms of linear spaces. Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, pp. 55-61 University of California Press, Berkeley, CA, 1967. MR0215134 (35, 5977), Zbl 0189.17501. 1197 · Zbl 0189.17501
[34] Schweizer, B.; Sklar, A. Probabilistic Metric Spaces. Elsevier/North-Holland, New York, 1983; reissued by Dover Publications, Mineola, New York, 2005. MR0790314 (86g:54045), Zbl 0546.60010. 1200 · Zbl 0546.60010
[35] Tychonoff, A. Ein Fixpunktsatz. Math. Ann. 111 (1935), no. 1, 767-776. MR1513031, Zbl 0012.30803, doi: 10.1007/BF01472256. 1197 · JFM 61.1195.01 · doi:10.1007/BF01472256
[36] Werner, D. A proof of the Markov-Kakutani fixed point theorem via the Hahn-Banach theorem. Extr. Math. 8 (1992), no. 1, 37-38. MR1270326, Zbl 0998.47037. 1197, 1198 (Qiang Tu) School of Mathematics and Statistics, Central South University, Hunan 410083, China qiangtu126@126.com (Xiaohuan Mu) School of Mathematics and Statistics, Central South University, Hunan 410083, China xiaohuanmu@163.com (Tiexin Guo) School of Mathematics and Statistics, Central South University, Hu-nan 410083, China tiexinguo@csu.edu.cn This paper is available via http://nyjm.albany.edu/j/2024/30-53.html.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.