×

Growth and blow-up of solutions with positive initial energy for a viscoelastic Kirchhoff equation with a logarithmic nonlinearity, delay and balakrishnan-Taylor damping terms. (English) Zbl 07920736

Summary: A nonlinear viscoelastic Kirchhoff-type equation with a logarithmic nonlinearity, delay and Balakrishnan-Taylor damping terms is studied. We prove the exponential growth and the blow-up of solutions with positive initial-energy under suitable hypotheses.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35B44 Blow-up in context of PDEs
35L20 Initial-boundary value problems for second-order hyperbolic equations
35L71 Second-order semilinear hyperbolic equations
35R09 Integro-partial differential equations
93D20 Asymptotic stability in control theory
Full Text: DOI

References:

[1] K. Agre and M. A. Rammaha, Systems of nonlinear wave equations with damping and source terms, Different. Integr. Equat., 19 (2007), 1235-1270. · Zbl 1212.35268
[2] J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quarterly Journal of Mathematics, 28 (1977), 473-486. doi: 10.1093/qmath/28.4.473. · Zbl 0377.35037 · doi:10.1093/qmath/28.4.473
[3] A. V. Balakrishnan and L. W. Taylor, Distributed Parameter Nonlinear Dampingmodels for Flight Structures, Proceedings (Damping 89), Flight Dynamics Lab and Air Force Wright Aeronautical Labs. Washington: WPAFB; 1989.
[4] J. D. Barrow and P. Parsons, Inflationary models with logarithmic potentials, Phys. Rev. D, 52 (1995), 5576-5587.
[5] K. Bartkowski and P. Gorka, One-dimensional Klein-Gordon equation with logarithmic nonlinearities, J. Phys. A, 41(35) (2008), 355201, 11 pp. doi: 10.1088/1751-8113/41/35/355201. · Zbl 1146.81021 · doi:10.1088/1751-8113/41/35/355201
[6] R. W. Bass and D. Zes, Spillover nonlinearity, and flexible structures, The Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems.Washington., NASA Conference Publication, 10065 (1991), 1-14.
[7] I. Bialynicki-Birula and J. Mycielski, Wave equations with logarithmic nonlinearities, Bull Acad Polon Sci Ser Sci MathAstronom Phys., 23 (1975), 461-466.
[8] D. R. Bland, The Theory of Linear Viscoelasticity, International Series of Monographs on Pure and Applied Mathematics, Vol. 10 Pergamon Press, New York-London-Oxford-Paris, 1960. · Zbl 0108.38501
[9] S. Boulaaras, A. Choucha, D. Ouchenane and B. Cherif, Blow up of solutions of two singular nonlinear viscoelastic equations with general source and localized frictional damping terms, Adv. Differ. Equ., 2020 (2020), 310, 10 pp. doi: 10.1186/s13662-020-02772-0. · Zbl 1485.35284 · doi:10.1186/s13662-020-02772-0
[10] S. Boulaaras, R. Jan, A. Choucha, A. Zeraï and M. Benzahi, Blow-up and lifespan of solutions for elastic membrane equation with distributed delay and logarithmic nonlinearity, Boundary Value Problems, (2024), Paper No. 36, 13 pp. doi: 10.1186/s13661-024-01843-5. · Zbl 07880456 · doi:10.1186/s13661-024-01843-5
[11] S. Boulaaras, A. Draifia and K. Zennir, General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping and logarithmic nonlinearity, Math. Methods Appl. Sci., 42 (2019), 4795-4814. doi: 10.1002/mma.5693. · Zbl 1428.35037 · doi:10.1002/mma.5693
[12] M. M. Cavalcanti, D. Cavalcanti and J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Meth. Appl. Sci., 24 (2001), 1043-1053. doi: 10.1002/mma.250. · Zbl 0988.35031 · doi:10.1002/mma.250
[13] A. Choucha and S. Boulaaras, Asymptotic behavior for a viscoelastic Kirchhoff equation with distributed delay and Balakrishnan-Taylor damping, Boundary Value Problems, (2021) Paper No. 77, 16 pp. doi: 10.1186/s13661-021-01555-0. · Zbl 1486.35049 · doi:10.1186/s13661-021-01555-0
[14] A. Choucha, D. Ouchenane and S. Boulaaras, Blow-up of a nonlinear viscoelastic wave equation with distributed delay combined with strong damping and source terms, J. Nonlinear Funct. Anal., (2020), Article ID 31. doi: 10.23952/jnfa.2020.31. · doi:10.23952/jnfa.2020.31
[15] A. Choucha, S. Boulaaras, D. Ouchenane and S. Beloul, General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, logarithmic nonlinearity and distributed delay terms, Math. Methods Appl. Sci., 44 (2020), 5436-5457. doi: 10.1002/mma.7121. · Zbl 1471.35043 · doi:10.1002/mma.7121
[16] A. Choucha, S. Boulaaras, R. Jan and R. Alharbi, Blow-up and decay of solutions for a viscoelastic Kirchhoff-type equation with distributed delay and variable exponents, Math. Meth. Appl. Sci., (2024), 1-18. doi: 10.1002/mma.9950. · Zbl 07871693 · doi:10.1002/mma.9950
[17] A. Choucha, M. Hidan, B. Cherif and S. A. Idris, Growth of solutions with \(L_{2 ( p + 2 )}\)-norm for a coupled nonlinear viscoelastic Kirchhoff equation with degenerate damping terms, AIMS Mathematics, 7 (2021), 371-383. doi: 10.3934/math.2022025. · Zbl 1485.35286 · doi:10.3934/math.2022025
[18] A. Choucha, D. Ouchenane and K. Zennir, Exponential growth of solution with \(L_p\)-norm for class of non-linear viscoelastic wave equation with distributed delay term for large initial data, Open J. Math. Anal., 3 (2020), 76-83. doi: 10.30538/psrp-oma2020.0054. · doi:10.30538/psrp-oma2020.0054
[19] H. Chen, P. Luo and G. W. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84-98. doi: 10.1016/j.jmaa.2014.08.030. · Zbl 1302.35071 · doi:10.1016/j.jmaa.2014.08.030
[20] B. D. Coleman and W. Noll, Foundations of linear viscoelasticity, Reviews of Modern Physics, 33 (1961), 239-249. doi: 10.1103/RevModPhys.33.239. · Zbl 0103.40804 · doi:10.1103/RevModPhys.33.239
[21] B. Feng and A. Soufyane, Existence and decay rates for a coupled Balakrishnan-Taylor viscoelastic system with dynamic boundary conditions, Math. Methods. Sci., 43 (2020), 3375-3391. doi: 10.1002/mma.6127. · Zbl 1446.35022 · doi:10.1002/mma.6127
[22] B. Gheraibia and N. Boumaza, General decay result of solution for viscoelastic wave equation with Balakrishnan-Taylor damping and a delay term, Z. Angew. Math. Phys., 71 (2020), Paper No. 198, 12 pp. doi: 10.1007/s00033-020-01426-1. · Zbl 1460.35037 · doi:10.1007/s00033-020-01426-1
[23] P. Gorka, Logarithmic Klein-Gordon equation, Acta Phys. Polon. B, 40 (2009), 59-66. · Zbl 1371.81101
[24] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1975), 1061-1083. doi: 10.2307/2373688. · Zbl 0318.46049 · doi:10.2307/2373688
[25] M. Kafini and S. A. Messaoudi, Local existence and blow up of solutions to a logarithmic nonlinear wave equation with delay, Applicable Analysis, 99 (2020), 530-547. doi: 10.1080/00036811.2018.1504029. · Zbl 1439.35090 · doi:10.1080/00036811.2018.1504029
[26] G. Kirchhoff, Vorlesungen uber Mechanik, Leipzig. Tauber; 1883.
[27] G. Liang, Y. Zhaoqin and L. Guonguang, Blow up and global existence for a nonlinear viscoelastic wave equation with strong damping and nonlinear damping and source terms, Applied Mathematics, 6 (2015), 806-816.
[28] W. Liu, B. Zhu, G. Li and D. Wang, General decay for a viscoelastic Kirchhoof equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term, Evol. Equ. Control Theory., 6 (2017), 239-260. doi: 10.3934/eect.2017013. · Zbl 1360.35110 · doi:10.3934/eect.2017013
[29] F. Mesloub and S. Boulaaras, General decay for a viscoelastic problem with not necessarily decreasing kernel, J. Appl. Math. Comput., 58 (2018), 647-665. doi: 10.1007/s12190-017-1161-9. · Zbl 1403.35050 · doi:10.1007/s12190-017-1161-9
[30] S. A. Messaoudi and B. Said-Houari, Global nonexistence of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms, J. Math. Anal. Appl., 365 (2010), 277-287. doi: 10.1016/j.jmaa.2009.10.050. · Zbl 1188.35029 · doi:10.1016/j.jmaa.2009.10.050
[31] C. Mu and J. Ma, On a system of nonlinear wave equations with Balakrishnan-Taylor damping, Z. Angew. Math. Phys., 65 (2014), 91-113. doi: 10.1007/s00033-013-0324-2. · Zbl 1295.35309 · doi:10.1007/s00033-013-0324-2
[32] S. Nicaise and C. Pignoti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585. doi: 10.1137/060648891. · Zbl 1180.35095 · doi:10.1137/060648891
[33] B. Said-Houari, Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms, Diff. Integral Equations, 23 (2010), 79-92. · Zbl 1240.35342
[34] E. Vitillaro, Global existence theorems for a class of evolution equations with dissipation, Arch. Ration. Mech. Anal., 149 (1999), 155-182. doi: 10.1007/s002050050171. · Zbl 0934.35101 · doi:10.1007/s002050050171
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.