×

Global nonexistence of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms. (English) Zbl 1188.35029

The authors deal with the initial-boundary value problem for a system of viscoelastic wave equations in a form
\[ \begin{aligned} &u_{tt}(x,t)- \Delta u+ \int_0^tg(t-s)\Delta u(x,s)\,ds+ | u_t|^{m-1}u_t= f_1(u,v),\\ &v_{tt}(x,t)- \Delta v+ \int_0^th(t-s)\Delta v(x,s)\,ds+ | v_t|^{r-1}v_t= f_2(u,v),\quad x\in \Omega,\;t>0,\\ &u(x,t)=v(x,t)=0,\quad x\in \partial\Omega,\;t\geq 0,\\ &\left(u(0),v(0)\right)=(u_0,v_0),\;\left(u_t(0),v_t(0)\right)=(u_1,v_1),\quad x\in \Omega,\end{aligned} \]
where \(\Omega\) is a bounded domain of \(\mathbb R^N\) \((N\geq 1)\) with a smooth boundary \(\partial\Omega\). They prove a global nonexistence of solutions for a large class of initial data for which the initial energy takes positive values.

MSC:

35B44 Blow-up in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35L71 Second-order semilinear hyperbolic equations
35L20 Initial-boundary value problems for second-order hyperbolic equations
35R09 Integro-partial differential equations
74D05 Linear constitutive equations for materials with memory
35L53 Initial-boundary value problems for second-order hyperbolic systems
Full Text: DOI

References:

[1] Agre, K.; Rammaha, M. A., Systems of nonlinear wave equations with damping and source terms, Differential Integral Equations, 19, 11, 1235-1270 (2006) · Zbl 1212.35268
[2] Ball, J., Remarks on blow up and nonexistence theorems for nonlinear evolutions equations, Quart. J. Math. Oxford, 28, 2, 473-486 (1977) · Zbl 0377.35037
[3] Georgiev, V.; Todorova, G., Existence of a solution of the wave equation with nonlinear damping and source term, J. Differential Equations, 109, 295-308 (1994) · Zbl 0803.35092
[4] Han, X.; Wang, M., Global existence and blow-up of solutions for a system of nonlinear viscoelastic wave equations with damping and source, Nonlinear Anal. (2009), in press · Zbl 1195.35070
[5] Haraux, A.; Zuazua, E., Decay estimates for some semilinear damped hyperbolic problems, Arch. Ration. Mech. Anal., 150, 191-206 (1988) · Zbl 0654.35070
[6] Kafini, M.; Messaoudi, S. A., A blow up result for a viscoelastic system in \(R^N\), Electron. J. Differential Equations, 113, 1-7 (2006)
[7] Kafini, M.; Messaoudi, S. A., A blow up result in a Cauchy viscoelastic problem, Appl. Math. Lett., 21, 6, 549-553 (2008) · Zbl 1149.35076
[8] Kalantarov, V. K.; Ladyzhenskaya, O. A., The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type, J. Soviet Math., 10, 53-70 (1978) · Zbl 0388.35039
[9] Levine, H. A.; Park, S. R., Global existence and global non-existence of solutions of the Cauchy problem for a non-linearly damped wave equation, J. Math. Anal. Appl., 228, 181-205 (1998) · Zbl 0922.35094
[10] Levine, H. A.; Park, S. R.; Serrin, J., Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation, J. Math. Anal. Appl., 228, 1, 181-205 (1998) · Zbl 0922.35094
[11] Levine, H. A.; Serrin, J., Global nonexistence theorems for quasilinear evolution equations with dissipation, Arch. Ration. Mech. Anal., 137, 4, 341-361 (1997) · Zbl 0886.35096
[12] Levine, H. A.; Todorova, G., Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy, Proc. Amer. Math. Soc., 129, 2, 793-805 (2001) · Zbl 0956.35087
[13] Levine, H. A., Instability and nonexistence of global solutions to nonlinear wave equations of the form, Trans. Amer. Math. Soc., 192, 1-21 (1974) · Zbl 0288.35003
[14] Levine, H. A., Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5, 138-146 (1974) · Zbl 0243.35069
[15] Messaoudi, S. A., Blow up in a nonlinearly damped wave equation, Math. Nachr., 231, 1-7 (2001) · Zbl 1023.35064
[16] Messaoudi, S. A., Blow up and global existence in nonlinear viscoelastic wave equations, Math. Nachr., 260, 58-66 (2003) · Zbl 1035.35082
[17] Messaoudi, S. A., Blow up of solutions with positive initial energy in a nonlinear viscoelastic wave equations, J. Math. Anal. Appl., 320, 902-915 (2006) · Zbl 1098.35031
[18] Munoz Rivera, J. E.; Naso, M.; Vuk, E., Asymptotic behavior of the energy for electromagnetic system with memory, Math. Methods Appl. Sci., 25, 7, 819-841 (2004) · Zbl 1054.35103
[19] Said-Houari, B., Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms, Differential Integral Equations, 23, 1-2, 79-92 (2010) · Zbl 1240.35342
[20] Serrin, J.; Todorova, G.; Vitillaro, E., Existence for a nonlinear wave equation with damping and source terms, Differential Integral Equations, 16, 1, 13-50 (2003) · Zbl 1036.35146
[21] Todorova, G., The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type, C. R. Math. Acad. Sci. Paris, 326, 1, 191-196 (1998) · Zbl 0922.35095
[22] Todorova, G., Stable and unstable sets for the Cauchy problem for a nonlinear wave with nonlinear damping and source terms, J. Math. Anal. Appl., 239, 213-226 (1999) · Zbl 0934.35095
[23] Vitillaro, E., Global existence theorems for a class of evolution equations with dissipation, Arch. Ration. Mech. Anal., 149, 155-182 (1999) · Zbl 0934.35101
[24] Wang, Y., A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Amer. Math. Soc., 136, 10, 3477-3482 (2008) · Zbl 1154.35064
[25] Wang, Y., A global nonexistence theorem for viscoelastic equations with arbitrary positive initial energy, Appl. Math. Lett., 22, 1394-1400 (2009) · Zbl 1173.35575
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.