×

The dynamical behavior and periodic solution in delayed nonautonomous chemostat models. (English) Zbl 07919788

Summary: In this paper, the global dynamics and existence of positive periodic solutions in a general delayed nonautonomous chemostat model are investigated. The positivity and ultimate boundedness of solutions are firstly obtained. The sufficient conditions on the uniform persistence and strong persistence of solutions are established. Furthermore, the criterion on the global attractivity of trivial solution is also established. As the applications of main results, the periodic delayed chemostat model is discussed, and the necessary and sufficient criteria on the existence of positive periodic solutions, and uniform persistence and extinction of microorganism species are obtained. Lastly, the numerical examples are presented to illustrate the main conclusions.

MSC:

92D25 Population dynamics (general)
34K13 Periodic solutions to functional-differential equations
34D20 Stability of solutions to ordinary differential equations
Full Text: DOI

References:

[1] P. Amster, G. Robledo and D. Seplveda, Dynamics of a chemostat with periodic nutrient supply and delay in the growth, Nonlinearity, 2020, 33(11), 5839-5860. · Zbl 1470.34222
[2] P. Amster, G. Robledo and D. Sepš²lveda, Existence of ω-periodic solutions for a delayed chemostat with periodic inputs, Nonlinear Anal., Real World Appl., 2020, 55, 103134. · Zbl 1455.34081
[3] E. Beretta and Y. Kuang, Global Stability in a well known delayed chemostat model, Commun. Appl. Anal., 2000, 4(2), 147-155. · Zbl 1089.34546
[4] T. Caraballo, X. Han and P. E. Kloeden, Chemostats with random inputs and wall growth, Math. Methods Appl. Sci., 2015, 38(16), 3538-3550. · Zbl 1341.34053
[5] T. Caraballo, X. Han and P. E. Kloeden, Nonautonomous chemostats with variable delays, SIAM J. Math. Anal., 2015, 47(3), 2178-2199. · Zbl 1323.92155
[6] G. D’ans, P. Kokotović and D. Gottlieb, A nonlinear regulator problem for a model of biological waste treatment, IEEE Trans. Automat. Control, 1971, 16(4), 341-347.
[7] S. F. Ellermeyer, S. S. Pilyugin and R. M. Redheffer, Persistence criteria for a chemostat with variable nutrient input, J. Differ. Equ., 2001, 171(1), 132-147. · Zbl 0983.34039
[8] R. Fekih-Salem, C. Lobry and T. Sari, A density-dependent model of competi-tion for one resource in the chemostat, Math. Biosci., 2017, 286, 104-122. · Zbl 1366.92074
[9] X. Feng, J. Tian and X. Ma, Coexistence of an unstirred chemostat model with B-D functional response by fixed point index theory, J. Inequal. Appl., 2016, 2016(1), 294. · Zbl 1457.92115
[10] A. G. Fredrickson and G. Stephanopoulos, Microbial competition, Science, 1981, 213(4511), 972-979. · Zbl 1225.92054
[11] H. I. Freedman, J. W. So and P. Waltman, Coexistence in a model of com-petition in the chemostat incorporating discrete delays, SIAM J. Appl. Math., 1989, 49(3), 859-870. · Zbl 0676.92013
[12] R. Freter, H. Brickner and S. Temme, An understanding of colonization re-sistance of the mammalian large intestine requires mathematical analysis, Mi-croecol. Therapy, 1986, 16, 147-155.
[13] P. Gajardo, F. Mazenc and H. Ramirez, Competitive exclusion principle in a model of chemostat with delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 2009, 16(2), 253-272. · Zbl 1187.34112
[14] M. Gao, D. Jiang, T. Hayat, A. Alsaedi and B. Ahmad, Dynamics of a stochas-tic chemostat competition model with plasmid-bearing and plasmid-free organ-isms, J. Appl. Anal. Comput., 2020, 10(4), 1464-1481. · Zbl 1456.92084
[15] J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganism Cultures, ISTE Ltd, London, 2017. · Zbl 1384.92001
[16] S. B. Hsu and P. Waltman, Analysis of a model of two competitors in a chemo-stat with an external inhibitor, SIAM J. Appl. Math., 1992, 52(2), 528-540. · Zbl 0788.34040
[17] J. W. M. La Rivière, Microbial Ecology of Liquid Waste Treatment, Springer, Boston, 1977.
[18] M. Lin, H. Huo and Y. Li, A competitive model in a chemostat with nutrient recycling and antibiotic treatment, Nonlinear Anal., Real World Appl., 2012, 13(6), 2540-2555. · Zbl 1401.92069
[19] S. Liu, X. Wang, L. Wang and H. Song, Competitive exclusion in delayed chemostat models with differential removal rates, SIAM J. Appl. Math., 2014, 74(3), 634-648. · Zbl 1312.34111
[20] S. Liu, Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design, Elsevier, Kidlington, 2017.
[21] C. Lobry, F. Mazenc and A. Rapaport, Persistence in ecological models of competition for a single resource, C. R. Acad. Sci. Paris, Ser. I, 2005, 340(3), 199-204. · Zbl 1073.34054
[22] N. MacDonald, Time lags in biological models, Springer, New York, 1978. · Zbl 0403.92020
[23] F. Mazenc, S. I. Niculescu and G. Robledo, Stability analysis of mathematical model of competition in a chain of chemostats in series with delay, Appl. Math. Modelling, 2019, 76, 311-329. · Zbl 1481.92090
[24] F. Mazenc, G. Robledo and M. Malisoff, Stability and robustness analysis for a multispecies chemostat model with delays in the growth rates and uncertainties, Discr. Contin. Dyn. Syst. Ser. B, 2018, 23(4), 1851-1872. · Zbl 1396.92049
[25] X. Meng, L. Wang and T. Zhang, Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment, J. Appl. Anal. Comput., 2016, 6(3), 865-875. · Zbl 1463.34196
[26] J. Monod, La technique de culture continue, théorie et applications, Academic Press, New York, 1950.
[27] A. Novick and L. Szilard, Experiments with the chemostat on spontaneous mutation of bacteria, Proc. Nat. Acad. Sci., 1950, 36(12), 708-719.
[28] M. Rehim and Z. Teng, Permanence, average persistence and exctinction in nonautonomous single-species growth chemostat models, Adv. Complex Syst., 2006, 9(1), 41-58. · Zbl 1107.92055
[29] M. Rehim and Z. Teng, Mathematical analysis on nonautonomous droop model for phytoplankton growth in a chemostat: boundedness, permanence and ex-tinction, J. Math. Chem., 2009, 46(2), 459-483. · Zbl 1196.92046
[30] S. Ruan and X. He, Global stability in chemostat-type competitionmodels with nutrient recycling, SIAM J. Appl. Math., 1998, 58(1), 170-192. · Zbl 0912.34062
[31] T. Sari and F. Mazenc, Global dynamics of the chemostat with different rates and variable yields, Math. Biosci. Eng., 2011, 8(3), 827-840. · Zbl 1260.92121
[32] S. Sun, C. Guo and X. Liu, Hopf bifurcation of a delayed chemostat model with general monotone response functions, Comp. Appl. Math., 2018, 37(3), 2714-2737. · Zbl 1402.34084
[33] H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge Uni-versity Press, Cambridge, 1995. · Zbl 0860.92031
[34] Z. Teng, Z. Li and H. Jiang, Permanence criteria in non-autonomous predator-prey Kolmogorov systems and its applications, Dyn. Syst., 2004, 19(2), 171-194. · Zbl 1066.34048
[35] Z. Teng and L. Chen, The positive periodic solutions of periodic Kolmogorov type systems with delays (in Chinese), Acta Math. Appl. Sin., 1999, 22(3), 446-456. · Zbl 0976.34063
[36] Z. Teng, L. Nie and X. Fang, The periodic solutions for general periodic impul-sive population systems of functional differential equations and its applications, Comp. Math. Appl., 2011, 61(9), 2690-2703. · Zbl 1221.34181
[37] T. F. Thingstad and T. I. Langeland, Dynamics of chemostat culture: the effect of a delay in cell response, J. Theor. Biol., 1974, 48(1), 149-159.
[38] P. Waltman, Competition Models in Population Biology, SIAM, Philadelphia, 1983. · Zbl 0572.92019
[39] L. Wang and G. S. K. Wolkowicz, A delayed chemostat model with general nonmonotone response functions and differential removal rates, J. Math. Anal. Appl., 2006, 321(1), 452-468. · Zbl 1092.92048
[40] K. Wang, Z. Teng and X. Zhang, Dynamic behaviors in a droop model for phytoplankton growth in a chemostat with nutrient periodically pulsed input, Discr. Dyn. Nat. Soc., 2012, 2012 (Part 2), 843735. · Zbl 1244.92058
[41] J. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat, SIAM J. Math. Anal., 2007, 38(6), 1860-1885. · Zbl 1330.35198
[42] X. Zhang and R. Yuan, Stochastic properties of solution for a chemostat model with a distributed delay and random disturbance, Int. J. Biomath., 2020, 13(7), 2050066. · Zbl 1465.37106
[43] X. Zhao, Dynamical Systems in Population Biology, Springer, London, 2003. · Zbl 1023.37047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.