×

Mathematical analysis on nonautonomous droop model for phytoplankton growth in a chemostat: Boundedness, permanence and extinction. (English) Zbl 1196.92046

Summary: We considered the non-autonomous M. R. Droop model [see J. Mar. Biol. Assoc. 48, 689–733 (1968)] for phytoplankton growth in a chemostat in which the nutrient input varies non-periodically. It is assumed that the growth rate varies with the internal nutrient level of the cell and the uptake rate of phytoplankton depends on both the external and the internal nutrient concentrations. A series of new criteria on the positivity, boundedness, permanence and extinction of the population is established.

MSC:

92D40 Ecology
37N25 Dynamical systems in biology
Full Text: DOI

References:

[1] Butler G.J., Waltman P.: SIAM J. Appl. Math. 45, 435–499 (1985) · Zbl 0584.92027 · doi:10.1137/0145025
[2] Droop M.R.: UK: J. Mar. Biol. Assoc. 48, 689–733 (1968) · doi:10.1017/S0025315400019238
[3] Droop M.R.: J Phycol. 9, 264–272 (1973)
[4] El-Owaidy H.M., Ismail M.: Appl. Math. Comp. 13, 787–795 (2002)
[5] El-Owaidy H.M., Moniem A.A.: Appl. Math. Comp. 147, 147–161 (2004) · Zbl 1026.92047 · doi:10.1016/S0096-3003(02)00658-6
[6] Freedman H.I., Moson P.: Proc. Am. Math. Soc. 109, 1025–1033 (1990) · doi:10.1090/S0002-9939-1990-1012928-6
[7] Grover J.P.: Am. Nat. 138, 811–835 (1991) · doi:10.1086/285254
[8] Grover J.P.: Oikos 62, 231–243 (1991) · doi:10.2307/3545269
[9] Grover J.P.: J. Theor. Biol. 15, 409–428 (1992) · doi:10.1016/S0022-5193(05)80707-6
[10] J. Monod, Recherches sur la Croissance des Cultures Bacteriennes (Herman, Paris, 1942) · Zbl 0063.04097
[11] Sommer U.: Limnol. Oceanogr. 30, 335–346 (1985) · doi:10.4319/lo.1985.30.2.0335
[12] Smith H.L., Waltman P.: The Theory of the Chemostat. University Press, Cambridge (1994) · Zbl 0831.92028
[13] H.L. Smith, Monotone Dynamical Systems (American Mathematical Society, Mathematical Surveys and Monographs, 1995) · Zbl 0821.34003
[14] Smith H.L.: J. Math. Biol. 35, 545–556 (1997) · Zbl 0878.92032 · doi:10.1007/s002850050065
[15] Smith H.L.: SIAM. J. Appl. Math. 40, 498–521 (1981) · Zbl 0467.92018 · doi:10.1137/0140042
[16] Stephanopolous G., Fredrickson A.G., Aris R.: Am. Inst. Chem. Eng. J. 25, 863–872 (1979)
[17] Tilman D.: Resource Competition and Community Structure. University Press, Princeton (1982)
[18] Teng Z.: Appl. Anal. 72, 339–352 (1999) · Zbl 1031.34045 · doi:10.1080/00036819908840745
[19] Teng Z.: Nonlinear Anal. 42, 1221–1230 (2000) · Zbl 1135.34319 · doi:10.1016/S0362-546X(99)00149-2
[20] Teng Z., Chen L.: Nonlinear Anal. RWA 4, 335–364 (2003) · Zbl 1018.92033 · doi:10.1016/S1468-1218(02)00026-3
[21] Teng Z., Li M., Jiang H.: Dyn. Syst. 19, 1–24 (2004) · Zbl 1066.34048 · doi:10.1080/14689360410001698851
[22] Wolkowicz G.S.K., Zhao X.Q.: Diff. Integral Equ. 11, 465–491 (1998)
[23] Wolkowicz G.S.K., Xia H., Ruan S.: SIAM. J. Appl. Math. 57, 1281–1310 (1997) · Zbl 0893.34067 · doi:10.1137/S0036139995289842
[24] Xia H., Ruan S.: J. Math. Biol. 37, 253–271 (1998) · Zbl 0935.92034 · doi:10.1007/s002850050128
[25] Xia H., Ruan S.: SIAM. J. Math. Anal. 29, 681–696 (1998) · Zbl 0916.34064 · doi:10.1137/S0036141096311101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.