×

Capacity solution and numerical approximation to a nonlinear coupled elliptic system in anisotropic Sobolev spaces. (English) Zbl 07919237

Summary: In this paper, we analyze the existence and the numerical simulation of a capacity solution to a coupled nonlinear elliptic system, whose unknowns are the temperature inside a semiconductor material \(u\), and the electric potential \(\varphi\). The model problem we refer to is \[ \begin{cases} -\Delta_{\vec{p}}\, u =\rho(u)|\nabla \varphi|^2 & \text{ in } \Omega \\ \operatorname{div}(\rho(u) \nabla \varphi)=0 & \text{ in } \Omega \\ \varphi=\varphi_0 & \text{ on } \partial \Omega \\ u=0 & \text{ on } \partial \Omega \end{cases} \] where \(\Omega\) is an open bounded set of \(\mathbb{R}^N\), \(N\geq 2\) and \(\Delta_{\vec{p}}\, u= \sum \limits_{i = 1}\limits^N \partial_i\left( |\partial_i u|^{p_i-2}\partial_i u \right)\), is the \(\vec{p}\)-Laplacian operator. We consider the case of a nonuniformly elliptic problem.

MSC:

35J47 Second-order elliptic systems
35J70 Degenerate elliptic equations
47H05 Monotone operators and generalizations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

Software:

FreeFem++
Full Text: DOI

References:

[1] R. Adams, Sobolev Spaces, Press, New York, 1975.
[2] S. Antontsev and M. Chipot, Anisotropic equations: uniqueness and existence results, Differ. Integr. Equations, 2008, 21(5-6), 401-419. · Zbl 1224.35088
[3] S. Antontsev and M. Chipot, The thermistor problem: existence, smoothness, uniqueness, blowup, SIAM J. Math. Anal., 1994, 25(4), 1128-1156. · Zbl 0808.35059
[4] M. Bahari, R. Elarabi, and M. Rhoudaf, Existence of capacity solution for a perturbed nonlinear coupled system, J. Elliptic. Parabol. Equ., 2021, 7(1), 101-119. · Zbl 1470.35129
[5] J. Barret and W. B. Liu, Finite element approximation of the p-Laplacian, Math. Comput., 1993, 61(204), 523-537. · Zbl 0791.65084
[6] J. Barret and W. B. Liu, Finite element approximation of the parabolic p-Laplacian, SIAM J. Numer. Anal. 1994, 31, 413-428. · Zbl 0805.65097
[7] M. Bendahmane, M. Chrif and S. El Manouni, An approximation result in generalized anisotropic Sobolev spaces and applications, Z. Anal. Anwend., 2011, 30, 341-353. · Zbl 1231.35065
[8] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equa-tions, Springer, New York, 2011. · Zbl 1220.46002
[9] M. Chrif and S. El Manouni, On a strongly anisotropic equation with L 1 data, Appl. Anal., 2008, 87(7), 865-871. · Zbl 1157.35047
[10] M. Cimatti and G. Prodi, Existence results for a nonlinear elliptic system modelling a temperature dependent electrical resistor, Ann. Mat. Pura Appl., 1998, 63, 227-236.
[11] M. T. González Montesinos and F. Ortegón Gallego, Existence of a capacity solution to a coupled nonlinear parabolic-elliptic system, Commun. Pure Appl. Anal., 2007, 6(1), 23-42. · Zbl 1141.35352
[12] M. T. González Montesinos and F. Ortegón Gallego, The thermistor problem with degenerate thermal conductivity and metallic conduction, Discrete Contin. Dyn. Syst., 2007, 2007 (Special), 446-455. · Zbl 1163.35442
[13] M. Ghilani, E. H. Quenjel and M. Rhoudaf, Numerical Analysis of a Stable Finite Volume Scheme for a Generalized Thermistor Model, Comput. Methods Appl. Math., 2021, 21(1), 69-87. · Zbl 1473.65139
[14] F. Hecht, The Mesh Adapting Software: BAMG, INRIA Report, vol. 250, 1998.
[15] F. Hecht, New development in Freefem++, J. Numer. Math., 2012, 20(3-4), 251-265. · Zbl 1266.68090
[16] H. Moussa, F. Ortegón Gallego and M. Rhoudaf, Capacity solution to a coupled system of parabolic-elliptic equations in Orlicz-Sobolev spaces, Nonlinear Differ. Equ. Appl., 2018, 25(14), 1-37. · Zbl 1391.35233
[17] H. Moussa, F. Ortegón Gallego and M. Rhoudaf, Capacity solution to a nonlin-ear elliptic coupled system in Orlicz-Sobolev spaces, Mediterr. J. Math., 2020, 17(67), 1-28. · Zbl 1437.35312
[18] F. Ortegón Gallego, M. Rhoudaf and H. Sabiki, On a nonlinear parabolic-elliptic system in Musielak-Orlicz spaces, Electron. J. Differ. Equ., 2018, 121, 1-36. · Zbl 1393.35053
[19] X. Xu, A degenerate Stefan-like problem with Joule’s heating, SIAM J. Math. Anal., 1992, 23, 1417-1438. · Zbl 0768.35081
[20] X. Xu, A strongly degenerate system involving an equation of parabolic type and an equation of elliptic type, Comm. Partial Differential Equations 1993, 18, 199-213. · Zbl 0814.35062
[21] X. Xu, On the existence of bounded temperature in the thermistor problem with degeneracy. Nonlinear Anal.: T. M. A., 2000, 42(2), 199-213. · Zbl 0964.35005
[22] X. Xu, Local regularity theorems for the stationary thermistor problem with oscillating degeneracy, J. Math. Anal. Appl., 2008, 338(1), 274-284. · Zbl 1132.35489
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.