×

Capacity solution to a coupled system of parabolic-elliptic equations in Orlicz-Sobolev spaces. (English) Zbl 1391.35233

Summary: The existence of a capacity solution to a coupled nonlinear parabolic-elliptic system is analyzed, the elliptic part in the parabolic equation being of the form \(-\,\operatorname{div}\, a(x,t,u,\nabla u)\). The growth and the coercivity conditions on the monotone vector field \(a\) are prescribed by an \(N\)-function, \(M\), which does not have to satisfy a \(\Delta _2\) condition. Therefore we work with Orlicz-Sobolev spaces which are not necessarily reflexive. We use Schauder’s fixed point theorem to prove the existence of a weak solution to certain approximate problems. Then we show that some subsequence of approximate solutions converges in a certain sense to a capacity solution.

MSC:

35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
35D30 Weak solutions to PDEs
35J70 Degenerate elliptic equations
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

References:

[1] Adams, R.: Sobolev Spaces. Press, New York (1975) · Zbl 0314.46030
[2] Aharouch, L., Bennouna, J.: Existence and uniqueness of solutions of unilateral problems in Orlicz spaces. Nonlinear Anal. Theory Methods Appl. 72, 3553-3565 (2010) · Zbl 1185.35111 · doi:10.1016/j.na.2010.01.005
[3] Antontsev, S.N., Chipot, M.: The thermistor problem: existence, smoothness, uniqueness, blowup. SIAM J. Math. Anal. 25, 1128-1156 (1994) · Zbl 0808.35059 · doi:10.1137/S0036141092233482
[4] Apushkinskaya, D., Bildhauer, M., Fuchs, M.: Steady states of anisotropic generalized Newtonian fluids. J. Math. Fluid Mech. 7, 261-297 (2005) · Zbl 1162.76375 · doi:10.1007/s00021-004-0118-6
[5] Azroul, E., Redwane, H., Rhoudaf, M.: Existence of a renormalized solution for a class of nonlinear parabolic equations in Orlicz spaces. Port. Math. 66(1), 29-63 (2009) · Zbl 1176.35104 · doi:10.4171/PM/1829
[6] Bildhauer, M., Fuchs, M., Zhong, X.: On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids. Algebra i Analiz 18, 1-23 (2006) (Translation in St. Petersburg Math. J. 18 (2007), 183-199) · Zbl 1129.35061
[7] Dankert, G.: Sobolev Embedding Theorems in Orlicz Spaces. Ph.D. thesis, University of Köln (1966) · Zbl 0964.35005
[8] Diening, L.: Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129(8), 657-700 (2005) · Zbl 1096.46013 · doi:10.1016/j.bulsci.2003.10.003
[9] Donaldson, T.K., Trudinger, N.S.: Orlicz-Sobolev spaces and imbedding theorems. J. Funct. Anal. 8(1), 52-75 (1971) · Zbl 0216.15702 · doi:10.1016/0022-1236(71)90018-8
[10] Elmahi, A., Meskine, D.: Parabolic initial-boundary value problems in Orlicz spaces. Ann. Polon. Math. 85, 99-119 (2005) · Zbl 1102.35030 · doi:10.4064/ap85-2-1
[11] Elmahi, A., Meskine, D.: Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces. Nonlinear Anal. Theory Methods Appl. 60, 1-35 (2005) · Zbl 1082.35085 · doi:10.1016/j.na.2004.08.018
[12] Elmahi, A., Meskine, D.: Strongly nonlinear parabolic equations with natural growth terms and \[L^1\] L1 data in Orlicz spaces. Port. Math. N. S. 62(2), 143-183 (2005) · Zbl 1087.35055
[13] González Montesinos, M.T., Ortegón Gallego, F.: The evolution thermistor problem with degenerate thermal conductivity. Commun. Pure Appl. Anal. 1(3), 313-325 (2002) · Zbl 1012.35047 · doi:10.3934/cpaa.2002.1.313
[14] González Montesinos, M.T., Ortegón Gallego, F.: Existence of a capacity solution to a coupled nonlinear parabolic-elliptic system. Commun. Pure Appl. Anal. 6(1), 23-42 (2007) · Zbl 1141.35352 · doi:10.3934/cpaa.2007.6.23
[15] Gossez, J.P.: Nonlinear elliptic boundary value problems for equations with rapidly or slowly increasing coefficients. Trans. Am. Math. Soc. 190, 163-205 (1974) · Zbl 0239.35045 · doi:10.1090/S0002-9947-1974-0342854-2
[16] Gossez, J.P.: Some approximation properties in Orlicz-Sobolev. Stud. Math. 74, 17-24 (1982) · Zbl 0503.46018 · doi:10.4064/sm-74-1-17-24
[17] Hadj Nassar, S., Moussa, H., Rhoudaf, M.: Renormalized Solution for a nonlinear parabolic problems with noncoercivity in divergence form in Orlicz spaces. Appl. Math. Comput. 249, 253-264 (2014) · Zbl 1338.35257
[18] Krasnosel’skii, M.A., Rutickii, Y.B.: Convex Functions and Orlicz Spaces. Noordhoff, Groningen (1969)
[19] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983) · Zbl 0557.46020 · doi:10.1007/BFb0072210
[20] O’Neil, R.: Fractional integration in Orlicz spaces. Trans. Am. Math. Soc. 115, 300-328 (1965) · Zbl 0132.09201 · doi:10.1090/S0002-9947-1965-0194881-0
[21] Rajagopal, K.R., Ru̇žička, M.: Mathematical modeling of electrorheological materials. Continue Mech. Thermodyn. 13, 59-78 (2001) · Zbl 0971.76100 · doi:10.1007/s001610100034
[22] Ru̇žička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics. Springer, Berlin (2000) · Zbl 0968.76531
[23] Tienari, M.: A degree theory for a class of mappings of monotone type in Orlicz-Sobolev spaces. In: Annales Academie Scientiarum Fennice, Helsinki (1994) · Zbl 0821.47044
[24] Xu, X.: A degenerate Stefan-like problem with Joule’s heating. SIAM J. Math. Anal. 23, 1417-1438 (1992) · Zbl 0768.35081 · doi:10.1137/0523081
[25] Xu, X.: A strongly degenerate system involving an equation of parabolic type and an equation of elliptic type. Commun. Part. Differ. Equ. 18, 199-213 (1993) · Zbl 0814.35062 · doi:10.1080/03605309308820927
[26] Xu, X.: On the existence of bounded temperature in the thermistor problem with degeneracy. Nonlinear Anal. Theory Methods Appl. 42, 199-213 (2000) · Zbl 0964.35005 · doi:10.1016/S0362-546X(98)00340-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.