×

On isomorphic embeddings in the class of disjointly homogeneous rearrangement invariant spaces. (English. Russian original) Zbl 07918224

Sib. Math. J. 65, No. 3, 505-513 (2024); translation from Sib. Mat. Zh. 65, No. 3, 435-445 (2024).
Summary: The equivalence of the Haar system in a rearrangement invariant space \(X\) on \([0,1]\) and a sequence of pairwise disjoint functions in some Lorentz space is known to imply that \(X=L_2[0,1]\) up to the equivalence of norms. We show that the same holds for the class of uniform disjointly homogeneous rearrangement invariant spaces and obtain a few consequences for the properties of isomorphic embeddings of such spaces. In particular, the \(L_p[0,1]\) space with \(1<p<\infty\) is the only uniform \(p \)-disjointly homogeneous rearrangement invariant space on \([0,1]\) with nontrivial Boyd indices which has two rearrangement invariant representations on the half-axis \((0,\infty) \).

MSC:

46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces
46B25 Classical Banach spaces in the general theory
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
47Bxx Special classes of linear operators
Full Text: DOI

References:

[1] Johnson, WB; Maurey, B.; Schechtman, G.; Tzafriri, L., Symmetric Structures in Banach Spaces, 1979, Providence: Amer. Math. Soc., Providence · Zbl 0421.46023 · doi:10.1090/memo/0217
[2] Woo, JYT, On a class of universal modular sequence spaces, Israel J. Math., 20, 3, 193-215, 1975 · Zbl 0311.46009 · doi:10.1007/BF02760327
[3] Lindenstrauss, J.; Tzafriri, L., Classical Banach Spaces. II: Function Spaces, 1979, Berlin, Heidelberg, and New York: Springer, Berlin, Heidelberg, and New York · Zbl 0403.46022 · doi:10.1007/978-3-662-35347-9
[4] Lindenstrauss, J.; Tzafriri, L., On Orlicz sequence spaces. III, Israel J. Math., 14, 368-389, 1973 · Zbl 0262.46031 · doi:10.1007/BF02764715
[5] Carothers, NL, Rearrangement invariant subspaces of Lorentz function spaces, Israel J. Math., 40, 3, 217-228, 1981 · Zbl 0491.46027 · doi:10.1007/BF02761363
[6] Carothers, NL, Rearrangement invariant subspaces of Lorentz function spaces. II, Rocky Mountain J. Math., 17, 3, 607-616, 1987 · Zbl 0644.46013 · doi:10.1216/RMJ-1987-17-3-607
[7] Kalton, NJ, Lattice Structures on Banach Spaces, 1993, Providence: Amer. Math. Soc., Providence · Zbl 0780.46021 · doi:10.1090/memo/0493
[8] Tzafriri L., “Uniqueness of structure in Banach spaces,” in: Handbook of the Geometry of Banach Spaces. Vol. 2, Elsevier, Amsterdam (2003), 1635-1670. · Zbl 1058.46006
[9] Astashkin, SV, Some remarks about disjointly homogeneous symmetric spaces, Rev. Mat. Complut., 32, 3, 823-835, 2019 · Zbl 1441.46022 · doi:10.1007/s13163-018-0289-y
[10] Krein, SG; Petunin, YI; Semenov, EM, Interpolation of Linear Operators, 1982, Providence: Amer. Math. Soc., Providence · Zbl 0493.46058
[11] Flores, J.; Tradacete, P.; Troitsky, VG, Disjointly homogeneous Banach lattices and compact products of operators, J. Math. Anal. Appl., 354, 2, 657-663, 2009 · Zbl 1171.47016 · doi:10.1016/j.jmaa.2009.01.025
[12] Flores, J.; Hernández, FL; Spinu, E.; Tradacete, P.; Troitsky, VG, Disjointly homogeneous Banach lattices: Duality and complementation, J. Funct. Anal., 266, 9, 5858-5885, 2014 · Zbl 1315.46024 · doi:10.1016/j.jfa.2013.12.024
[13] Astashkin, SV, Disjointly homogeneous Orlicz spaces revisited, Ann. Mat. Pura Appl., 200, 6, 2689-2713, 2021 · Zbl 1479.46027 · doi:10.1007/s10231-021-01097-3
[14] Figiel, T.; Johnson, WB; Tzafriri, L., On Banach lattices and spaces having local unconditional structure with applications to Lorentz function spaces, J. Approx. Theor., 13, 395-412, 1975 · Zbl 0307.46007 · doi:10.1016/0021-9045(75)90023-4
[15] Flores, J.; Hernández, FL; Semenov, EM; Tradacete, P., Strictly singular and power-compact operators on Banach lattices, Israel J. Math., 188, 9, 323-352, 2012 · Zbl 1262.46017 · doi:10.1007/s11856-011-0152-z
[16] Flores J., Hernández F.L., and Tradacete P., “Disjointly homogeneous Banach lattices and applications,” in: Positivity VII. Trends in Mathematics, Springer, Switzerland (2016), 179-201. · Zbl 1411.46017
[17] Astashkin, SV, Duality problem for disjointly homogeneous rearrangement invariant spaces, J. Funct. Anal., 276, 10, 3205-3225, 2019 · Zbl 1415.46020 · doi:10.1016/j.jfa.2018.08.020
[18] Kashin, BS; Saakyan, AA, Orthogonal Series, 1999, Providence: Amer. Math. Soc., Providence
[19] Lindenstrauss, J.; Tzafriri, L., Classical Banach Spaces. I: Sequence Spaces, 1977, Berlin and New York: Springer, Berlin and New York · Zbl 0362.46013 · doi:10.1007/978-3-642-66557-8
[20] Johnson, WB; Schechtman, G., Sums of independent random variables in rearrangement invariant function spaces, Ann. Probab., 17, 2, 789-808, 1989 · Zbl 0674.60051 · doi:10.1214/aop/1176991427
[21] Astashkin, SV; Sukochev, FA, Independent functions and the geometry of Banach spaces, Russian Math. Surveys, 65, 6, 1003-1081, 2010 · Zbl 1219.46025 · doi:10.1070/RM2010v065n06ABEH004715
[22] Hernández, FL; Semenov, EM, Subspaces generated by translations in rearrangement invariant spaces, J. Funct. Anal., 169, 1, 52-80, 1999 · Zbl 0944.46019 · doi:10.1006/jfan.1999.3493
[23] Astashkin, SV; Curbera, GP, Rosenthal’s space revisited, Studia Math., 262, 2, 197-224, 2022 · Zbl 1491.46019 · doi:10.4064/sm201011-4-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.