×

Duality problem for disjointly homogeneous rearrangement invariant spaces. (English) Zbl 1415.46020

This paper is motivated by a previous one of J. Flores et al. [J. Funct. Anal. 266, No. 9, 5858–5885 (2014; Zbl 1315.46024)].
A Banach lattice \(E\) is disjointly homogeneous (shortly DH) if two arbitrary normalized disjoint sequences from \(E\) contain equivalent subsequences.
For \(1\leq p \leq \infty,\) \(E\) is called \(p\)-disjointly homogeneous (shortly \(p\)-DH) if each normalized disjoint sequence has a subsequence equivalent in \(E\) to the unit vector basis of \(\ell_{p}\) (\(c_{0}\) when \(p=\infty\)).
Considering a question from the above mentioned paper, the author proves as the main result of the present paper:
Theorem 2. For every \(1< p < \infty\), there exists a \(p\)-DH reflexive r.i. space \(X_{p}\) on \([0,1]\) such that its dual space \(X_{p}^{\ast}\) is not DH.
The proof uses interpolation theory, more precisely, the Lions-Peetre interpolation spaces.
Another interesting result is
Theorem 5. Let \(X\) be a reflexive r.i. space on \((0,\infty)\). Then the following conditions are equivalent:
(a) \(X\) and \(X^{\ast}\) are DH;
(b) \(X=L_{p}(0,\infty)\) for some \(1< p< \infty\).

MSC:

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46B70 Interpolation between normed linear spaces
46B42 Banach lattices

Citations:

Zbl 1315.46024

References:

[1] Aliprantis, C. D.; Burkinshaw, O., Positive Operators (2006), Springer: Springer Dordrecht, Netherlands · Zbl 0508.47037
[2] Astashkin, S. V., Disjointly strictly singular inclusions of symmetric spaces, Mat. Zametki. Mat. Zametki, Math. Notes, 65, 1, 3-12 (1999), (in Russian); English transl. in · Zbl 0947.46017
[3] Astashkin, S. V., Disjointly homogeneous rearrangement invariant spaces via interpolation, J. Math. Anal. Appl., 421, 1, 338-361 (2015) · Zbl 1328.46022
[4] Astashkin, S. V., Rademacher System in Function Spaces (2017), Fizmatlit: Fizmatlit Moscow, (in Russian) · Zbl 1387.46002
[5] Astashkin, S. V.; Hernandez, F. L.; Semenov, E. M., Strictly singular inclusions of rearrangement invariant spaces and Rademacher spaces, Studia Math., 193, 3, 269-283 (2009) · Zbl 1185.46016
[6] Bennett, C.; Sharpley, R., Interpolation of Operators (1988), Academic Press: Academic Press Boston · Zbl 0647.46057
[7] Bergh, J.; Löfström, J., Interpolation Spaces. An Introduction (1976), Springer: Springer Berlin · Zbl 0344.46071
[8] Casazza, P. G.; Shura, T. J., Tsirelson’s Space, Lect. Notes Math., vol. 1363, 1-204 (1989) · Zbl 0709.46008
[9] Figiel, T.; Johnson, W. B., A uniformly convex Banach space which contains no \(l_p\), Compos. Math., 29, 179-190 (1974) · Zbl 0301.46013
[10] Flores, J.; Hernandez, F. L.; Semenov, E. M.; Tradacete, P., Strictly singular and power-compact operators on Banach lattices, Israel J. Math., 188, 323-352 (2012) · Zbl 1262.46017
[11] Flores, J.; Hernandez, F. L.; Spinu, E.; Tradacete, P.; Troitsky, V. G., Disjointly homogeneous Banach lattices: duality and complementation, J. Funct. Anal., 266, 9, 5858-5885 (2014) · Zbl 1315.46024
[12] Flores, J.; Hernandez, F. L.; Tradacete, P., Disjointly homogeneous Banach lattices and applications, (Ordered Structures and Applications: Positivity VII. Ordered Structures and Applications: Positivity VII, Trends in Mathematics (2016), Springer), 179-201 · Zbl 1411.46017
[13] Flores, J.; Tradacete, P.; Troitsky, V. G., Disjointly homogeneous Banach lattices and compact products of operators, J. Math. Anal. Appl., 354, 657-663 (2009) · Zbl 1171.47016
[14] Hernandez, F. L.; Rodriguez-Salinas, B., On \(l_p\)-complemented copies of Orlicz spaces II, Israel J. Math., 68, 27-55 (1989) · Zbl 0689.46006
[15] Hernandez, F. L.; Semenov, E. M., Subspaces generated by translations in rearrangement invariant spaces, J. Funct. Anal., 169, 52-80 (1999) · Zbl 0944.46019
[16] Hernandez, F. L.; Semenov, E. M., A characterization of \(L^p\) among rearrangement invariant function spaces, Positivity, 4, 253-258 (2000) · Zbl 0979.46016
[17] Hernandez, F. L.; Semenov, E. M.; Tradacete, P., Rearrangement invariant spaces with Kato property, Special Issue Dedicated to L. Drewnowski. Special Issue Dedicated to L. Drewnowski, Funct. Approx., 50, 2, 215-232 (2014) · Zbl 1311.46026
[18] Johnson, W. B.; Odell, E., Subspaces of \(L_p\) which embed into \(l_p\), Compos. Math., 28, 37-49 (1974) · Zbl 0282.46020
[19] Kadec, M. I.; Pełczyński, A., Bases, lacunary sequences and complemented subspaces in the spaces \(L_p\), Studia Math., 21, 161-176 (1961/1962) · Zbl 0102.32202
[20] Kalton, N. J., Minimal and strongly minimal Orlicz sequence spaces, (Geometry of Banach Spaces. Geometry of Banach Spaces, London Math. Soc. Lec. Note Ser., vol. 158 (1991)), 149-163 · Zbl 0780.46020
[21] Kalton, N. J., Calderón couples, Studia Math., 106, 3, 233-277 (1993) · Zbl 0810.46020
[22] Kantorovich, L. V.; Akilov, G. P., Functional Analysis (1982), Pergamon Press: Pergamon Press Oxford-Elmsford, New York · Zbl 0484.46003
[23] Krasnoselskii, M. A.; Rutickii, Ya. B., Convex Functions and Orlicz Spaces (1961), Noordhoff: Noordhoff Groningen · Zbl 0095.09103
[24] Kreĭn, S. G.; Petunīn, Y.Ī.; Semënov, E. M., Interpolation of Linear Operators, Translations of Mathematical Monographs, vol. 54 (1982), American Mathematical Society: American Mathematical Society Providence, R.I. · Zbl 0493.46058
[25] Levy, M., L’espace d’interpolation réel \((A_0, A_1)_{\theta, p}\) conteint \(l^p\), C. R. Acad. Sci. Paris, 289, 675-677 (1979) · Zbl 0421.46028
[26] Lindenstrauss, J.; Tzafriri, L., On Orlicz sequence spaces, II, Israel J. Math., 11, 353-379 (1972) · Zbl 0237.46034
[27] Lindenstrauss, J.; Tzafriri, L., On Orlicz sequence spaces, III, Israel J. Math., 14, 368-389 (1973) · Zbl 0262.46031
[28] Lindenstrauss, J.; Tzafriri, L., Classical Banach Spaces, I. Sequence Spaces (1977), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0362.46013
[29] Lindenstrauss, J.; Tzafriri, L., Classical Banach Spaces, II. Function Spaces (1979), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0403.46022
[30] Lions, J. L.; Peetre, J., Sur une classe d’espaces d’interpolation, Publ. Math. Inst. Hautes Études Sci., 19, 5-68 (1964) · Zbl 0148.11403
[31] Lozanovsky, G. Ya., Some topological properties of Banach lattices and reflexivity conditions on them, Sov. Math., Dokl., 9, 1415-1418 (1968), (in Russian) · Zbl 0189.42601
[32] Milman, V. D., Operators of class \(C_0\) and \(C_0^\ast \), Teor. Funkcii Funkcional. Anal. i Prilozen., 10, 15-26 (1970), (in Russian) · Zbl 0217.17201
[33] Novikov, S. Ya., A characteristic of subspaces of a symmetric space, (Studies in the Theory of Functions of Several Variables (1980), Yaroslav. Gos. Univ.: Yaroslav. Gos. Univ. Yaroslavl’), 140-148, (in Russian) · Zbl 0472.46023
[34] Tokarev, E. V., Symmetric function Banach space not containing \(l_p(1 \leq p < \infty)\) and \(c_0\), Funct. Anal. Appl., 18, 2, 75-76 (1984) · Zbl 0561.46018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.